Matching Items (25)
Filtering by

Clear all filters

157716-Thumbnail Image.png
Description
Membrane based technology is one of the principal methods currently in widespread use to address the global water shortage. Pervaporation desalination is a membrane technology for water purification currently under investigation as a method for processing reverse osmosis concentrates or for stand-alone applications. Concentration polarization is a potential problem in

Membrane based technology is one of the principal methods currently in widespread use to address the global water shortage. Pervaporation desalination is a membrane technology for water purification currently under investigation as a method for processing reverse osmosis concentrates or for stand-alone applications. Concentration polarization is a potential problem in any membrane separation. In desalination concentration polarization can lead to reduced water flux, increased propensity for membrane scaling, and decreased quality of the product water. Quantifying concentration polarization is important because reducing concentration polarization requires increased capital and operating costs in the form of feed spacers and high feed flow velocities. The prevalent methods for quantifying concentration polarization are based on the steady state thin film boundary layer theory. Baker’s method, previously used for pervaporation volatile organic compound separations but not desalination, was successfully applied to data from five previously published pervaporation desalination studies. Further investigation suggests that Baker’s method may not have wide applicability in desalination. Instead, the limitations of the steady state assumption were exposed. Additionally, preliminary results of nanophotonic enhancement of pervaporation membranes were found to produce significant flux enhancement. A novel theory on the mitigation of concentration polarization by the photothermal effect was discussed.
ContributorsMann, Stewart, Ph.D (Author) / Lind, Mary Laura (Thesis advisor) / Walker, Shane (Committee member) / Green, Matthew (Committee member) / Forzani, Erica (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2019
168818-Thumbnail Image.png
Description
Electrolytes play a critical role in electrochemical devices and applications, and therefore design and development of electrolytes with tailored properties are much desired to accommodate variety of operation requirements. Extreme temperatures are considered as one of the challenging environmental conditions, especially for devices rely on liquid state electrolytes, rendering failure

Electrolytes play a critical role in electrochemical devices and applications, and therefore design and development of electrolytes with tailored properties are much desired to accommodate variety of operation requirements. Extreme temperatures are considered as one of the challenging environmental conditions, especially for devices rely on liquid state electrolytes, rendering failure of operations once the electrolyte systems undergo phase transitions. This work focuses on development of low-temperature iodide-containing liquid electrolyte systems, specifically designed for the molecular electronic transducer (MET) sensors in space applications. Utilizing ionic liquids, molecular liquids, and salts, multiple low-temperature liquid electrolytes were designed with enhancements in thermal, transport, and electrochemical properties. Effects of intermolecular interactions were further investigated, revealing correlations between optimization of microscopic dynamics and improvements of macroscopic characteristics. As a result, three low-temperature electrolyte systems were reported utilizing ethylammonium/water, gamma-butyrolactone/propylene carbonate, and butyronitrile as solvent with ionic liquid, 1-butyl-3-methylimidazolium iodide, and lithium iodide salt. Consequently, the liquidus range of these systems have been extended to -108 ˚C, -120 ˚C, and -152 ˚C, respectively, marking the lowest liquidus temperature of liquid electrolytes to the author’s best knowledge. Moreover, transport properties of designed systems were characterized from 25 to -75 ˚C. Effects of selected cosolvent/solvent on evolutions of transport properties were observed, revealing interplay between two governing mechanisms, ion disassociation and ion mobility, and their dominance at different temperatures. Experimental spectroscopy characterization techniques validated the hypothesized intermolecular interactions between solvent-cation and solvent-anion, complimented by computational simulation results on the complex dynamics between constituent ions and molecules. To support MET sensing technology, the essential iodide/triiodide redox were investigated in developed electrolytes. Effects of different molecular solvents on electrochemical kinetics were elucidated, and steady performances were validated under a properly controlled electrochemical window. Optimized electrolytes were tested in the MET sensor prototypes and showcased adequate functionality from calibration. The MET sensor prototype has also successfully detected real-time earthquake with low noise floor during long term testing at ASU seismology facility. The presented work demonstrates a facile design strategy for task-specific electrolyte development, which is anticipated to be further expanded to high temperatures for broader applications in the future.
ContributorsLin, Wendy Jessica (Author) / Dai, Lenore L (Thesis advisor) / Wiegart, Yu-chen Karen (Committee member) / Emady, Heather (Committee member) / Lind Thomas, MaryLaura (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2022
190773-Thumbnail Image.png
Description
Lithium-ion and lithium-metal batteries represent a predominant energy storage solution with the potential to address the impending global energy crisis arising from limited non-renewable resources. However, these batteries face significant safety challenges that hinder their commercialization. The conventional polymeric separators and electrolytes have poor thermal stability and fireproof properties making

Lithium-ion and lithium-metal batteries represent a predominant energy storage solution with the potential to address the impending global energy crisis arising from limited non-renewable resources. However, these batteries face significant safety challenges that hinder their commercialization. The conventional polymeric separators and electrolytes have poor thermal stability and fireproof properties making them prone to thermal runaway that causes fire hazards and explosions when the battery is subjected to extreme operating conditions. To address this issue, various materials have been investigated for their use as separators. However, polymeric, and pure inorganic material-based separators have a trade-off between safety and electrochemical performance. This is where zeolites emerge as a promising solution, offering favorable thermal and electrochemical characteristics. The zeolites are coated onto the cathode as a separator using the scalable blade coating method. These separators are non-flammable with high thermal stability and electrolyte wettability. Furthermore, the presence of intracrystalline pores helps in homogenizing the Li-ion flux at anode resulting in improved electrochemical performance. This research delves into the preparation of zeolite separators using a commercial zeolite and lab-scale zeolite to study their safety and electrochemical performance in lithium-ion batteries. At low C-rates, both zeolites exhibited excellent capacity retention and capacity density displaying their potential to advance high-performance safe lithium-ion batteries. The commercial zeolite has demonstrated remarkable capacity retention and good performance in terms of charge and discharge cycles, as well as stability. This makes it a valuable resource for the scaling up of electrode-coated separator technology. Furthermore, the previous study demonstrated the superior electrochemical performance of plate silicalite separator (also a lab-made zeolite) with both lithium-ion and lithium-metal batteries. However, the process of scaling up and achieving precise control over plate silicalite particle size, and morphology using the existing synthesis procedure has proven challenging. Thus, the modification of process conditions is studied to enhance control over particle size, aspect ratio, and yield to facilitate a more efficient scaling-up process. Incorporation of stirring during the crystallization phase enhanced yield and uniformity of particle size. Also, the increase in temperature and time of crystallization enlarged the particles but did not show any significant improvement in the aspect ratio of the particles.
ContributorsNalam, Ramasai Dharani Harika (Author) / Lin, Jerry (Thesis advisor) / Emady, Heather (Committee member) / Seo, S. Eileen (Committee member) / Arizona State University (Publisher)
Created2023
190891-Thumbnail Image.png
Description
Electrospun fibrous membranes have gained increasing interest in membrane filtration applications due to their high surface area and porosity. To develop a high-performance water filtration membrane a novel zwitterionic functionalized zwitterionic Polysulfone was Electrospun to bead free fibers on Polysulfone membranes. The SBAES25 was successfully Electrospun on Polysulfone membrane and

Electrospun fibrous membranes have gained increasing interest in membrane filtration applications due to their high surface area and porosity. To develop a high-performance water filtration membrane a novel zwitterionic functionalized zwitterionic Polysulfone was Electrospun to bead free fibers on Polysulfone membranes. The SBAES25 was successfully Electrospun on Polysulfone membrane and thermal pressed at above Tg to improve the properties of membrane. The aim of this work is to study Electrospun zwitterionic Polysulfone nanofiber membrane with different characterization methods. The electrospinning method was studied using different polymer concentrations and electrospinning conditions. Scanning Electron Microscopy was used to study the porosity and diameter size of the fiber. TGA-ASSAY method was used to study the difference in water uptake ratio of Polysulfone membrane with and without the Electrospun fiber. A goniometer was used to test the water contact angle of the membrane. Tensile tests were performed to study the improvements in mechanical properties.
ContributorsErravelly, Nitheesh Kumar (Author) / Green, Matthew (Thesis advisor) / Emady, Heather (Committee member) / Seo, Eileen S (Committee member) / Arizona State University (Publisher)
Created2023
187751-Thumbnail Image.png
Description
The purpose of this study was to comprehend the global warming potential (GWP), cost variability, and competitiveness of steel with rising carbon taxes. Aluminum, glass fiber composite, and carbon fiber composite were chosen as competing materials. In order to compare the aforementioned factors, the GWP of several processes to produce

The purpose of this study was to comprehend the global warming potential (GWP), cost variability, and competitiveness of steel with rising carbon taxes. Aluminum, glass fiber composite, and carbon fiber composite were chosen as competing materials. In order to compare the aforementioned factors, the GWP of several processes to produce steel, aluminum, and fiber composites was examined. Cost analyses of various methods were also carried out to determine their viability. Energy consumption data for each of the paths under consideration were taken from the literature for the study. To get the consistent GWP for traditional and decarbonized scenarios, the required energy is multiplied with corresponding energy source (natural gas or electricity). Even after accounting for the carbon tax and the weight-reduction factor, the results show that steel still has the lowest production costs, followed by aluminum, while fiber composites remain the most costly. EAF- steel and secondary aluminum has least GWP followed by H2-DRI (Hydrogen- Direct Reduced Iron)steel and NG-DRI (Natural Gas- Direct Reduced Iron) steel with carbon capture and storage (CCS). The state of art technology for glass fiber reinforced composite also emits less carbon dioxide but the cost of production is still high. Carbon fiber reinforced composite emits most carbon dioxide and is least economical.
ContributorsRajulwar, Vaishnavi Vijay (Author) / Seetharaman, Sridhar (Thesis advisor) / Emady, Heather (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2023
189357-Thumbnail Image.png
Description
Due to the use of fertilizers, concentrations of harmful nitrate have increased in groundwater and surface waters globally in the last century. Water treatment plants primarily use separation techniques for nitrate treatment, but these technologies create a high nitrate concentration brine that is costly to dispose of. This dissertation focuses

Due to the use of fertilizers, concentrations of harmful nitrate have increased in groundwater and surface waters globally in the last century. Water treatment plants primarily use separation techniques for nitrate treatment, but these technologies create a high nitrate concentration brine that is costly to dispose of. This dissertation focuses on catalytic hydrogenation, an emerging technology capable of reducing nitrate to nitrogen gas using hydrogen gas (H2). This technology reduces nitrate at rates >95% and is an improvement over technologies used at water treatment plants, because the nitrate is chemically transformed with harmless byproducts and no nitrate brine. The goal of this dissertation is to upgrade the maturity of catalytic nitrate hydrogenation systems by overcoming several barriers hindering the scale-up of this technology. Objective 1 is to compare different methods of attaching the bimetallic catalyst to a hollow-fiber membrane surface to find a method that results in 1) minimized catalyst loss, and 2) repeatable nitrate removal over several cycles. Results showed that the In-Situ MCfR-H2 deposition was successful in reducing nitrate at a rate of 1.1 min-1gPd-1 and lost less than 0.05% of attached Pd and In cumulatively over three nitrate treatment cycles. Objective 2 is to synthesize catalyst-films with varied In3+ precursor decorated over a Pd0 surface to show the technology can 1) reliably synthesize In-Pd catalyst-films with varied bimetallic ratios, and 2) optimize nitrate removal activity by varying In-Pd ratio. Results showed that nitrate removal activity was optimized with a rate constant of 0.190 mg*min-1L-1 using a catalyst-film with a 0.045 In-Pd ratio. Objective 3 is to perform nitrate reduction in a continuous flow reactor for two months to determine if nitrate removal activity can be sustained over extended operation and identify methods to overcome catalyst deactivation. Results showed that a combination of increased hydraulic residence time and reduced pH was successful in increasing the nitrate removal and decreasing harmful nitrite byproduct selectivity to 0%. These objectives increased the technology readiness of this technology by enabling the reuse of the catalyst, maximizing nitrate reduction activity, and achieving long-term nitrate removal.
ContributorsLevi, Juliana (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Thesis advisor) / Garcia-Segura, Sergi (Committee member) / Wong, Michael (Committee member) / Lind Thomas, Mary Laura (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2023
187299-Thumbnail Image.png
Description
Adsorption is fundamentally known to be a non-isothermal process; in which temperature increase is largely significant, causing fairly appreciable impacts on the processkinetics. For porous adsorbent particles like metal organic frameworks (MOFs), silica gel, and zeolite, the resultant relative heat generated is partly distributed within the particle, and the rest is transferred

Adsorption is fundamentally known to be a non-isothermal process; in which temperature increase is largely significant, causing fairly appreciable impacts on the processkinetics. For porous adsorbent particles like metal organic frameworks (MOFs), silica gel, and zeolite, the resultant relative heat generated is partly distributed within the particle, and the rest is transferred to the surrounding ambient fluid (air). For large step changes in adsorbed phase concentration and fast adsorption rates, especially, the isothermality of adsorption (as in some studies) is an inadequate assumption and inspires rather erroneous diffusivities of porous adsorbents. Isothermal models, in consequence, are insufficient for studying adsorption in porous adsorbents. Non-isothermal models can satisfactorily and exhaustively describe adsorption in porous adsorbents. However, in many of the analyses done using the models, the thermal conductivity of the adsorbent is assumed to be infinite; thus, particle temperature is taken to be fairly uniform during the process—a trend not observed for carbon dioxide (CO2) adsorption on MOFs. A new and detailed analysis of CO2 adsorption in a single microporous MOF-5 particle, assuming a finite effective thermal conductivity along with comprehensive parametric studies for the models, is presented herein. A significant average temperature increase of 5K was calculated using the new model, compared to the 0.7K obtained using the Stremming model. A corresponding increase in diffusivity from 8.17 x 10-13 to 1.72 x 10-11 m2/s was observed, indicating the limitations of both isothermal models and models that assume constant diffusivity.
ContributorsNkuutu, John (Author) / Lin, Jerry (Thesis advisor) / Emady, Heather (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
187602-Thumbnail Image.png
Description
Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate

Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate reduction to inform improved remediation technologies can be done using Density functional theory (DFT) calculations. The adsorption of selenate, selenite, and arsenate was investigated on the alumina and hematite to inform sorbent design strategies. Adsorption energies were calculated as a function of surface structure, composition, binding motif, and pH within a hybrid implicit-explicit solvation strategy. Correlations between surface property descriptors including water network structure, cationic species identity, and facet and the adsorption energies of the ions show that the surface water network controls the adsorption energy more than any other, including the cationic species of the metal-oxide. Additionally, to achieve selectivity for selenate over sulphate, differences in their electronic structure must be exploited, for example by the reduction of selenate to selenite by Ti3+ cations. Thermochemical or electrochemical reduction pathways to convert NO3- to N2 or NH3, which are benign or value-added products, respectively are examined over single-atom electrocatalysts (SAC) in Cu. The activity and selectivity for nitrate reduction are compared with the competitive hydrogen evolution reaction (HER). Cu suppresses HER but produces toxic NO2- because of a high activation barrier for cleaving the second N-O bond. SACs provide secondary sites for reaction and break traditional linear scaling relationships. Ru-SACs selectively produce NH3 because N-O bond scission is facile, and the resulting N remains isolated on SAC sites; reacting with H+ from solvating H2O to form ammonia. Conversely, Pd-SAC forms N2 because the reduced N* atoms migrate to the Cu surface, which has a low H availability, allowing N atoms to combine to N2. This relation between N* binding preference and reduction product is demonstrated across an array of SAC elements. Hence, the solvation effects on the surface critically alter the activity of adsorption and catalysis and the removal of toxic pollutants can be improved by altering the surface water network.
ContributorsGupta, Srishti (Author) / Muhich, Christopher L (Thesis advisor) / Singh, Arunima (Committee member) / Emady, Heather (Committee member) / Westerhoff, Paul (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
187404-Thumbnail Image.png
Description
This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges

This study presents an evaluation of the predicted flow behavior and the minimum outlet diameter in a computationally simulated hopper. The flow pattern in hoppers was simulated to test three size fractions, three moisture levels of microcrystalline cellulose (MCC), and two hopper wall angles in Multiphase Flow with Interphase eXchanges (MFiX). Predictions from MFiX were then compared to current literature. As expected, the smaller size fractions with lower water content were closer to ideal funnel flow than their larger counterparts. The predicted minimum outlet diameter in simulations showed good agreement with close to ideal flowability. These findings illustrate the connection between lab flowability experiments and computational simulations. Lastly, three fluidized bed simulations were also created in MFiX with zeolite 13X to analyze the pressure and velocity within the bed. The application of flowability simulations can improve the transport of solids in processing equipment used during the production of powders.
ContributorsBuchanan, Lidija (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
157367-Thumbnail Image.png
Description
Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution,

Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution, and morphological properties when wet granulating microcrystalline cellulose and water. Previous experiments had identified the different growth regimes within wet granulation, as well as the granule formation mechanisms in single-drop granulation experiments, but little research has been conducted to determine how results extracted from single drop experiments could be used to better understand the first principles that drive high shear granulation. The experiment found that under a liquid solid ratio of 110%, the granule growth rate was linear as opposed to the induction growth regime experienced at higher liquid solid ratios. L/S ratios less than 100% led to a bimodal distribution comprised of large distributions of ungranulated powder and large irregular granules. Insufficient water hampered the growth of granules due to lack of enough water bridges to connect the granules and powder, while the large molecules continued to agglomerate with particles as they rotated around the mixer. The nozzle end was augmented so that drop size as well as drop height could be adjusted and compared to single-drop granulation experiments in proceeding investigations. As individual factors, neither augmentation had significant contributions to granule size, but preliminary screens identified that interaction between increasing L/S ratio and decreasing drop size could lead to narrower distributions of particles as well as greater circularity. Preliminary screening also identified that decreasing the drop height of the nozzle could increase the rate of particle growth during the 110% L/S trials without changing the growth mechanisms, indicating a way to alter the rate of steady-state particle growth. This paper screens for which factors are most pertinent to associating single-drop and wet granulation in order to develop granulation models that can ascertain information from single-drop granulations and predict the shape and size distribution of any wet granulation, without the need to run costly wet granulation experiments.
ContributorsLay, Michael (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019