Matching Items (31)
Filtering by

Clear all filters

152004-Thumbnail Image.png
Description
To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their

To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their microbiology and electrochemistry, much is still unknown about the mechanism of electron transfer to the anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy (EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth were used to uncover the potential gradients that emerge in biofilms as they grow and become thicker. While a better understanding of this model ARB is sought, electrochemical characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this organism can function as an ARB and produce seemingly high current densities while consuming different organic substrates, including acetate, butyrate, and glycerol. The importance of identifying and studying novel ARB for broader MXC applications was stressed in this thesis as a potential avenue for tackling some of human energy problems.
ContributorsAjulo, Oluyomi (Author) / Torres, Cesar (Thesis advisor) / Nielsen, David (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2013
152390-Thumbnail Image.png
Description
Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have

Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have limitations at high temperature resulting in poor permeation performance. To address these limitations, the use of a dense dual-phase membrane has been studied. These membranes are composed of conductive solid and conductive liquid phases that have the ability to selectively permeate CO2 by forming carbonate ions that diffuse through the membrane at high temperature. The driving force for transport through the membrane is a CO2 partial pressure gradient. The membrane provides a theoretically infinite selectivity. To address stability of the ceramic-carbonate dual-phase membrane for CO2 capture at high temperature, the ceramic phase of the membrane was studied and replaced with materials previously shown to be stable in harsh conditions. The permeation properties and stability of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF)-carbonate, La0.85Ce0.1Ga0.3Fe0.65Al0.05O3-δ (LCGFA)-carbonate, and Ce0.8Sm0.2O1.9 (SDC)-carbonate membranes were examined under a wide range of experimental conditions at high temperature. LSCF-carbonate membranes were shown to be unstable without the presence of O2 due to reaction of CO2 with the ceramic phase. In the presence of O2, however, the membranes showed stable permeation behavior for more than one month at 900oC. LCGFA-carbonate membranes showed great chemical and permeation stability in the presence of various conditions including exposure to CH4 and H2, however, the permeation performance was quite low when compared to membranes in the literature. Finally, SDC-carbonate membranes showed great chemical and permeation stability both in a CO2:N2 environment for more than two weeks at 900oC as well as more than one month of exposure to simulated syngas conditions at 700oC. Ceramic phase chemical stability increased in the order of LSCF < LCGFA < SDC while permeation performance increased in the order of LCGFA < LSCF < SDC.
ContributorsNorton, Tyler (Author) / Lin, Jerry Y.S. (Thesis advisor) / Alford, Terry (Committee member) / Lind, Mary Laura (Committee member) / Smith, David (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2013
152433-Thumbnail Image.png
Description
Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring

Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring amino acid phenylalanine, the precursor to styrene. Styrene production was accomplished using an E. coli phenylalanine overproducer, E. coli NST74, and over-expression of PAL2 from Arabidopsis thaliana and FDC1 from Saccharomyces cerevisiae. The styrene pathway was then extended by just one enzyme to either (S)-styrene oxide (StyAB from Pseudomonas putida S12) or (R)-1,2-phenylethanediol (NahAaAbAcAd from Pseudomonas sp. NCIB 9816-4) which are both used in pharmaceutical production. Overall, these pathways suffered from limitations due to product toxicity as well as limited precursor availability. In an effort to overcome the toxicity threshold, the styrene pathway was transferred to a yeast host with a higher toxicity limit. First, Saccharomyces cerevisiae BY4741 was engineered to overproduce phenylalanine. Next, PAL2 (the only enzyme needed to complete the styrene pathway) was then expressed in the BY4741 phenylalanine overproducer. Further strain improvements included the deletion of the phenylpyruvate decarboxylase (ARO10) and expression of a feedback-resistant choristmate mutase (ARO4K229L). These works have successfully demonstrated the possibility of utilizing microorganisms as cellular factories for the production styrene, (S)-styrene oxide, and (R)-1,2-phenylethanediol.
ContributorsMcKenna, Rebekah (Author) / Nielsen, David R (Thesis advisor) / Torres, Cesar (Committee member) / Caplan, Michael (Committee member) / Jarboe, Laura (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2014
151194-Thumbnail Image.png
Description
The diversity of industrially important chemicals that can be produced biocatalytically from renewable resources continues to expand with the aid of metabolic and pathway engineering. In addition to biofuels, these chemicals also include a number of monomers with utility in conventional and novel plastic materials production. Monomers used for polyamide

The diversity of industrially important chemicals that can be produced biocatalytically from renewable resources continues to expand with the aid of metabolic and pathway engineering. In addition to biofuels, these chemicals also include a number of monomers with utility in conventional and novel plastic materials production. Monomers used for polyamide production are no exception, as evidenced by the recent engineering of microbial biocatalysts to produce cadaverine, putrescine, and succinate. In this thesis the repertoire and depth of these renewable polyamide precursors is expanded upon through the engineering of a novel pathway that enables Escherichia coli to produce, as individual products, both δ-aminovaleric acid (AMV) and glutaric acid when grown in glucose mineral salt medium. δ-Aminovaleric acid is the monomeric subunit of nylon-5 homopolymer, whereas glutaric acid is a dicarboxylic acid used to produce copolymers such as nylon-5,5. These feats were achieved by increasing endogenous production of the required pathway precursor, L-lysine. E. coli was engineered for L-lysine over-production through the introduction and expression of metabolically deregulated pathway genes, namely aspartate kinase III and dihydrodipicolinate synthase, encoded by the feedback resistant mutants lysCfbr and dapAfbr, respectively. After deleting a natural L-lysine decarboxylase, up to 1.6 g/L L-lysine could be produced from glucose in shake flasks as a result. The natural L-lysine degradation pathway of numerous Pseudomonas sp., which passes from L-lysine through both δ-aminovaleric acid and glutaric acid, was then functionally reconstructed in a piecewise manner in the E. coli L-lysine over-producer. Expression of davBA alone resulted in the production of over 0.86 g/L AMV in 48 h. Expression of davBADT resulted in the production of over 0.82 g/L glutaric acid under the same conditions. These production titers were achieved with yields of 69.5 and 68.4 mmol/mol of AMV and glutarate, respectively. Future improvements to the ability to synthesize both products will likely come from the ability to eliminate cadaverine by-product formation through the deletion of cadA and ldcC, genes involved in E. coli's native lysine degradation pathway. Nevertheless, through metabolic and pathway engineering, it is now possible produce the polyamide monomers of δ-aminovaleric acid and glutaric acid from renewable resources.
ContributorsAdkins, Jake M (Author) / Nielsen, David R. (Thesis advisor) / Caplan, Michael (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2012
151103-Thumbnail Image.png
Description
Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem is recovery of biofuels from fermentation

Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem is recovery of biofuels from fermentation broth with the relatively low product titer achieved. A lot of in situ product recovery techniques including liquid-liquid extraction, membrane extraction, pervaporation, gas stripping and adsorption have been developed and adsorption is shown to be the most promising one compared to other methods. Yet adsorption is not perfect due to defect in adsorbents and operation method used. So laurate adsorption using polymer resins was first investigated by doing adsorption isotherm, kinetic, breakthrough curve experiment and column adsorption of laurate from culture. The results indicate that polymer resins have good capacity for laurate with the highest capacity of 430 g/kg achieved by IRA-402 and can successfully recover laurate from culture without causing problem to Synechocystis sp.. Another research of this paper focused on a novel adsorbent: magnetic particles by doing adsorption equilibrium, kinetic and toxicity experiment. Preliminary results showed excellent performance on both adsorption capacity and kinetics. But further experiment revealed that magnetic particles were toxicity and inhibited growth of all kinds of cell tested severely, toxicity probably comes from Co (III) in magnetic particles. This problem might be solved by either using biocompatible coatings or immobilization of cells, which needs more investigation.
ContributorsWang, Yuchen (Author) / Nielsen, David Ross (Thesis advisor) / Andino, Jean (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2012
137115-Thumbnail Image.png
Description
In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for

In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for all cells were life time, thermal cycle/time based performance, and failure modes for cells. Two types of DFFC, anode and electrolyte supported, were used with two different fuel feed streams of propane/isobutene and ethanol. Several test configurations consisting of single cells, as well as stacked systems were tested to show how cell performed and degraded over time. All tests were run using a Biologic VMP3 potentiostat connected to a cell placed within the flame of a modified burner MSR® Wisperlite Universal stove. The maximum current and power output seen by any electrolyte supported DFFCs tested was 47.7 mA/cm2 and 9.6 mW/cm2 respectively, while that generated by anode supported DFFCs was 53.7 mA/cm2 and 9.25 mW/cm2 respectively with both cells operating under propane/isobutene fuel feed streams. All TECs tested dramatically outperformed both constructions of DFFC with a maximum current and power output of 309 mA/cm2 and 80 mW/cm2 respectively. It was also found that electrolyte supported DFFCs appeared to be less susceptible to degradation of the cell microstructure over time but more prone to cracking, while anode supported DFFCs were dramatically less susceptible to cracking but exhibited substantial microstructure degradation and shorter usable lifecycles. TECs tested were found to only be susceptible to overheating, and thus were suggested for use with electrolyte supported DFFCs in remote powering applications.
ContributorsTropsa, Sean Michael (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137284-Thumbnail Image.png
Description
Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than

Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than pure gold nanoparticles due to reduced agglomeration. With the addition of N-isopropylacrylamide (NIPAAM) monomers, temperature-responsive asymmetric and core-shell polystyrene/poly(N-isopropylacrylamide)-gold composite particles are also synthesized via Pickering emulsion polymerization. The asymmetric particles have a greater thermo-responsiveness than the core-shell particles due to the increased presence of NIPAAM monomers in the seeded-growth formation. Poly(N-isopropylacrylamide) (PNIPAM)-containing asymmetric particles have tunable rheological and optical properties due to their significant size decrease above the lower critical solution temperature (LCST).
ContributorsRabiah, Noelle Ibrahim (Author) / Dai, Lenore (Thesis director) / Torres, Cesar (Committee member) / Zhang, Mingmeng (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
130848-Thumbnail Image.png
Description

Optimizing cathodes for microbial fuel cells is important to maximize energy harvested from wastewater. Cathodes were made by modifying a recipe from previous literature and testing the current of the cathode using linear sweep voltammetry. The cathodes contained an Fe-N-C catalyst combined with a Polytetrafluoroethylene binder. Optimizing the power resulting

Optimizing cathodes for microbial fuel cells is important to maximize energy harvested from wastewater. Cathodes were made by modifying a recipe from previous literature and testing the current of the cathode using linear sweep voltammetry. The cathodes contained an Fe-N-C catalyst combined with a Polytetrafluoroethylene binder. Optimizing the power resulting from the microbial fuel cells will help MFCs be an alternative energy source to fossil fuels. The new cathodes did improve in current production from −16 𝐴/𝑚 to −37 𝐴/𝑚 at -0.4 V. When fitted using a Butler-Volmer model, the cathode linear-sweep voltammograms did not follow the expected exponential trend. These results show a need for more research on the cathodes and the Butler-Volmer model, and they also show that the cathode is ready for further and longer application in a microbial fuel cell.

ContributorsRussell, Andrea Christine (Author) / Torres, Cesar (Thesis director) / Young, Michelle (Committee member) / School of Sustainable Engineering & Built Envirnmt (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
134363-Thumbnail Image.png
Description
Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were

Anaerobic digestion (AD), a common process in wastewater treatment plants, is traditionally assessed with Biochemical Methane Potential (BMP) tests. Hydrolysis is considered its rate-limiting step. During my research, I assessed the impact of pretreatment on BMPs and microbial electrochemical cells (MECs). In the first set of experiments, BMP tests were performed using alkaline and thermal pretreated waste activated sludge (WAS), a control group, and a negative control group as samples and AD sludge (ADS) as inoculum. The data obtained suggested that BMPs do not necessarily require ADS, since samples without inoculum produced 5-20% more CH4. However, ADS appears to reduce the initial methanogenesis lag in BMPs, as no pH inhibition and immediate CH4 production were observed. Consumption rate constants, which are related to hydrolysis, were calculated using three methods based on CH4 production, SSCOD concentration, and the sum of both, called the lumped parameter. All the values observed were within literature values, yet each provide a different picture of what is happening in the system. For the second set of experiments, the current production of 3 H-type MECs were compared to the CH4 production of BMPs to assess WAS solids' biodegradability and consumption rates relative to the pretreatment methods employed for their substrate. BMPs fed with pretreated and control WAS solids were performed at 0.42 and 1.42 WAS-to-ADS ratios. An initial CH4 production lag of about 12 days was observed in the BMP assays, but MECs immediately began producing current. When compared in terms of COD, MECs produced more current than the BMPs produced CH4, indicating that the MEC may be capable of consuming different types of substrate and potentially overestimating CH4 production in anaerobic digesters. I also observed 2 to 3 different consumption events in MECs versus 3 for BMP assays, but these had similar magnitudes, durations, and starting times in the control and thermal pretreated WAS-fed assays and not in alkaline assays. This might indicate that MECs identified the differences of alkaline pretreatment, but not between control WAS and thermal pretreated WAS. Furthermore, HPLC results suggest at least one hydrolysis event, as valerate, butyrate, and traces of acetate are observed in the reactors' effluents. Moreover, a possible inhibition of valerate-fixing microbial communities due to pretreatment and the impossibility of valerate consumption by ARB might explain its presence in the reactors' effluents.
ContributorsBrown Munoz, Francisco (Author) / Torres, Cesar (Thesis director) / Rittmann, Bruce E. (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05