Matching Items (13)
Filtering by

Clear all filters

151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
151233-Thumbnail Image.png
Description
The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal

The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal particles is presented. The stability of Pt particles was studied by in situ electrochemical scanning tunneling microscopy (ECSTM). It is shown that small Pt particles dissolve at a lower potential than the corresponding bulk material. For the alloy particles, two size ranges of AuAg particles, ∼4 nm and ∼45 nm in diameter, were synthesized by co–reduction of the salts of Au and Ag from an aqueous phase. The alloy particles were dealloyed at a series of potential by chronoamperometry in acid, and the resulting morphology and composition were characterized by electron microscopy, energy dispersive X–ray spectroscopy (EDX). In the case of the smaller particles, only surface dealloying occurred yielding a core–shell structure. A porous structure was observed for the larger particles when the potential was larger than a critical value that was within 50 mV of the thermodynamic prediction.
ContributorsLi, Xiaoqian (Author) / Sieradzki, Karl (Thesis advisor) / Crozier, Peter (Committee member) / Buttry, Daniel (Committee member) / Friesen, Cody (Committee member) / Arizona State University (Publisher)
Created2012
136591-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.
ContributorsStadie, Mikaela Johanna (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
137115-Thumbnail Image.png
Description
In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for

In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for all cells were life time, thermal cycle/time based performance, and failure modes for cells. Two types of DFFC, anode and electrolyte supported, were used with two different fuel feed streams of propane/isobutene and ethanol. Several test configurations consisting of single cells, as well as stacked systems were tested to show how cell performed and degraded over time. All tests were run using a Biologic VMP3 potentiostat connected to a cell placed within the flame of a modified burner MSR® Wisperlite Universal stove. The maximum current and power output seen by any electrolyte supported DFFCs tested was 47.7 mA/cm2 and 9.6 mW/cm2 respectively, while that generated by anode supported DFFCs was 53.7 mA/cm2 and 9.25 mW/cm2 respectively with both cells operating under propane/isobutene fuel feed streams. All TECs tested dramatically outperformed both constructions of DFFC with a maximum current and power output of 309 mA/cm2 and 80 mW/cm2 respectively. It was also found that electrolyte supported DFFCs appeared to be less susceptible to degradation of the cell microstructure over time but more prone to cracking, while anode supported DFFCs were dramatically less susceptible to cracking but exhibited substantial microstructure degradation and shorter usable lifecycles. TECs tested were found to only be susceptible to overheating, and thus were suggested for use with electrolyte supported DFFCs in remote powering applications.
ContributorsTropsa, Sean Michael (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
135272-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs).

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs). FOBs experience significant challenges with their wastewater treatment due to their isolation and dangers in transporting waste water and fresh water to and from the bases. Even though it is theoretically favorable to produce power in a MFC while treating black water, producing H2O2 is more useful and practical because it is a powerful cleaning agent that can reduce odor, disinfect, and aid in the treatment of gray water. Various acid forms of buffers were tested in the anode and cathode chamber to determine if the pH would lower in the cathode chamber while maintaining H2O2 efficiency, as well as to determine ion diffusion from the anode to the cathode via the membrane. For the catholyte experiments, phosphate and bicarbonate were tested as buffers while sodium chloride was the control. These experiments determined that the two buffers did not lower the pH. It was seen that the phosphate buffer reduced the H2O2 efficiency significantly while still staying at a high pH, while the bicarbonate buffer had the same efficiency as the NaCl control. For the anolyte experiments, it was shown that there was no diffusion of the buffers or MFC media across the membrane that would cause a decrease in the H2O2 production efficiency.
ContributorsThompson, Julia (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133669-Thumbnail Image.png
Description
The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the

The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the inclusion of supports in regions of the part that are not easily accessed by mechanical removal methods. Recent innovations in PBF support removal include dissolvable metal supports through an electrochemical etching process. Dissolvable PBF supports have the potential to significantly reduce the costs and time associated with traditional support removal. However, the speed and effectiveness of this approach is inhibited by numerous factors such as support geometry and metal powder entrapment within supports. To fully realize this innovative approach, it is necessary to model and understand the design parameters necessary to optimize support structures applicable to an electrochemical etching process. The objective of this study was to evaluate the impact of block additive manufacturing support parameters on key process outcomes of the dissolution of 316 stainless steel support structures. The parameters investigated included hatch spacing and perforation, and the outcomes of interests included time required for completion, surface roughness, and effectiveness of the etching process. Electrical current was also evaluated as an indicator of process completion. Analysis of the electrical current throughout the etching process showed that the dissolution is diffusion limited to varying degrees, and is dependent on support structure parameters. Activation and passivation behavior was observed during current leveling, and appeared to be more pronounced in non-perforated samples with less dense hatch spacing. The correlation between electrical current and completion of the etching process was unclear, as the support structures became mechanically removable well before the current leveled. The etching process was shown to improve surface finish on unsupported surfaces, but support was shown to negatively impact surface finish. Tighter hatch spacing was shown to correlate to larger variation in surface finish, due to ridges left behind by the support structures. In future studies, it is recommended current be more closely correlated to process completion and more roughness data be collected to identify a trend between hatch spacing and surface roughness.
ContributorsAbranovic, Brandon (Author) / Hildreth, Owen (Thesis director) / Torres, Cesar (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154857-Thumbnail Image.png
Description
This investigation is divided into two portions linked together by the momentous reaches of electrochemistry science, principles influencing everyday phenomena as well as innovative research in the field of energy transformation. The first portion explores the strategies for flue gas carbon dioxide capture and release using electrochemical means. The main

This investigation is divided into two portions linked together by the momentous reaches of electrochemistry science, principles influencing everyday phenomena as well as innovative research in the field of energy transformation. The first portion explores the strategies for flue gas carbon dioxide capture and release using electrochemical means. The main focus is in the role thiolates play as reversible strong nucleophiles with the ability to capture CO2 and form thiocarbonates. Carbon dioxide in this form is transported and separated from thiocarbonate through electrochemical oxidation to complete the release portion of this catch-and-release approach. Two testing design systems play a fundamental role in achieving an efficient CO2 catch and release process and were purposely build and adapted for this work. A maximum faradaic efficiency of seventeen percent was attained in the first membrane tests whose analysis is presented in this work. An efficiency close to thirty percent was attained with the membrane cell in recent experiments but have not been included in this manuscript.

The second portion of this manuscript studies bulk stress evolution resulting from insertion/extraction of lithium in/from a lithium manganese oxide spinel cathode structure. A cantilever-based testing system uses a sophisticated, high resolution capacitive technique capable of measuring beam deflections of the cathode in the subnanometer scale. Tensile stresses of up to 1.2 MPa are reported during delithiation along with compressive stresses of 1.0 MPa during lithiation. An analysis of irreversible charge loss is attributed to surface passivation phenomena with its associated stresses of formation following patterns of tensile stress evolution.
ContributorsCastro De la Torre, Helme Atic (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Bautista Martinez, Jose A (Committee member) / Arizona State University (Publisher)
Created2016
150335-Thumbnail Image.png
Description
Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to

Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to electrodeposition was enabled by solution chemistries that provide "bottom-up" or superfilling capability of vias and trenches. While the process has been and is used widely, the actual mechanisms responsible for superfilling remain relatively unknown. This dissertation presents and discusses the background and results of experimental investigations that have been done using in situ electrochemical surface stress monitoring techniques to study the evolution of stress on Cu{111} thin film electrodes. Because of its extreme sensitivity to the structure on both the electrode and solution sides of the interface, surface stress monitoring as analytical technique is well suited for the study of electrodeposition. These ultra-high resolution stress measurements reveal the dynamic response of copper electrodes to a number of electrochemical and chemical experimental variables. In the case of constant current pulsed deposition and stripping, the surface stress evolution depends not only on the magnitude of the current pulse, but also shows a marked response to plating bath composition. The plating bath chemistries used in this work include (1) additive free, (2) deposition suppressing solutions that include polyethylene glycol (PEG) and sodium chloride (NaCl) as well as (3) full additive solution combinations which contain PEG, NaCl, and a one of two deposition accelerating species (bis-(sodiumsulfopropyl)disulfide (SPS) or mercaptopropane sulfonic acid (MPS)). The development of thin film stress is further investigated through a series of solution exchange experiments that correlate the magnitude of electrode exchange current density and the stress state of the film. Remarkably, stress changes as large as ~8.5 N/m are observed during solution exchanges at the open circuit potential. Overall, this research demonstrates that solution chemistry can have a large impact on thin film stress evolution, even for very small deposition thicknesses (e.g. <10 ML) or in the absence of net addition or removal of material from the electrode.
ContributorsHeaton, Thomas Stanley (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011