Matching Items (10)
Filtering by

Clear all filters

151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
151233-Thumbnail Image.png
Description
The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal

The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal particles is presented. The stability of Pt particles was studied by in situ electrochemical scanning tunneling microscopy (ECSTM). It is shown that small Pt particles dissolve at a lower potential than the corresponding bulk material. For the alloy particles, two size ranges of AuAg particles, ∼4 nm and ∼45 nm in diameter, were synthesized by co–reduction of the salts of Au and Ag from an aqueous phase. The alloy particles were dealloyed at a series of potential by chronoamperometry in acid, and the resulting morphology and composition were characterized by electron microscopy, energy dispersive X–ray spectroscopy (EDX). In the case of the smaller particles, only surface dealloying occurred yielding a core–shell structure. A porous structure was observed for the larger particles when the potential was larger than a critical value that was within 50 mV of the thermodynamic prediction.
ContributorsLi, Xiaoqian (Author) / Sieradzki, Karl (Thesis advisor) / Crozier, Peter (Committee member) / Buttry, Daniel (Committee member) / Friesen, Cody (Committee member) / Arizona State University (Publisher)
Created2012
150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
157302-Thumbnail Image.png
Description
Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties

Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties of an analyte, including charge, conductivity, and zeta potential. DEP shows promise as a high-resolution differentiation and separation method, with the ability to distinguish between subtly-different populations. This, combined with the fast (on the order of minutes) analysis times offered by the technique, lend it many of the features necessary to be used in rapid diagnostics and point-of-care devices.

Here, a mathematical model of dielectrophoretic data is presented to connect analyte properties with data features, including the intercept and slope, enabling DEP to be used in applications which require this information. The promise of DEP to distinguish between analytes with small differences is illustrated with antibiotic resistant bacteria. The DEP system is shown to differentiate between methicillin-resistant and susceptible Staphylococcus aureus. This differentiation was achieved both label free and with bacteria that had been fluorescently-labeled. Klebsiella pneumoniae carbapenemase-positive and negative Klebsiella pneumoniae were also distinguished, demonstrating the differentiation for a different mechanism of antibiotic resistance. Differences in dielectrophoretic behavior as displayed by S. aureus and K. pneumoniae were also shown by Staphylococcus epidermidis. These differences were exploited for a separation in space of gentamicin-resistant and -susceptible S. epidermidis. Besides establishing the ability of DEP to distinguish between populations with small biophysical differences, these studies illustrate the possibility for the use of DEP in applications such as rapid diagnostics.
ContributorsHilton, Shannon (Author) / Hayes, Mark A. (Thesis advisor) / Borges, Chad (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2019
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154445-Thumbnail Image.png
Description
X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel

X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm – ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm – ~20 μm crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion. Additionally, a passive mixer was created to generate unique solution concentrations within isolated nanowells to crystallize phycocyanin and lysozyme. Crystal imaging with brightfield microscopy, UV fluorescence, and SONICC coupled with numerical modeling allowed quantification of crystal growth conditions for efficient phase diagram development. The developed microfluidic tools demonstrated the capability of improving samples for protein crystallography, offering a foundation for continued development of platforms to aid protein structure determination.
ContributorsAbdallah, Bahige G (Author) / Ros, Alexandra (Thesis advisor) / Buttry, Daniel (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2016
154857-Thumbnail Image.png
Description
This investigation is divided into two portions linked together by the momentous reaches of electrochemistry science, principles influencing everyday phenomena as well as innovative research in the field of energy transformation. The first portion explores the strategies for flue gas carbon dioxide capture and release using electrochemical means. The main

This investigation is divided into two portions linked together by the momentous reaches of electrochemistry science, principles influencing everyday phenomena as well as innovative research in the field of energy transformation. The first portion explores the strategies for flue gas carbon dioxide capture and release using electrochemical means. The main focus is in the role thiolates play as reversible strong nucleophiles with the ability to capture CO2 and form thiocarbonates. Carbon dioxide in this form is transported and separated from thiocarbonate through electrochemical oxidation to complete the release portion of this catch-and-release approach. Two testing design systems play a fundamental role in achieving an efficient CO2 catch and release process and were purposely build and adapted for this work. A maximum faradaic efficiency of seventeen percent was attained in the first membrane tests whose analysis is presented in this work. An efficiency close to thirty percent was attained with the membrane cell in recent experiments but have not been included in this manuscript.

The second portion of this manuscript studies bulk stress evolution resulting from insertion/extraction of lithium in/from a lithium manganese oxide spinel cathode structure. A cantilever-based testing system uses a sophisticated, high resolution capacitive technique capable of measuring beam deflections of the cathode in the subnanometer scale. Tensile stresses of up to 1.2 MPa are reported during delithiation along with compressive stresses of 1.0 MPa during lithiation. An analysis of irreversible charge loss is attributed to surface passivation phenomena with its associated stresses of formation following patterns of tensile stress evolution.
ContributorsCastro De la Torre, Helme Atic (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Bautista Martinez, Jose A (Committee member) / Arizona State University (Publisher)
Created2016
155090-Thumbnail Image.png
Description
New sol-gel routes were developed to fabricate transparent conducting oxide coatings for energy applications. Sol-gel synthesis was chosen because the metal oxide products have high surface area and porosity. Titanium sol-gel chemistry was the main focus of the studies, and the synthesis of macroporous antimony-doped tin oxide was

New sol-gel routes were developed to fabricate transparent conducting oxide coatings for energy applications. Sol-gel synthesis was chosen because the metal oxide products have high surface area and porosity. Titanium sol-gel chemistry was the main focus of the studies, and the synthesis of macroporous antimony-doped tin oxide was also explored. The surface chemistry and band characteristics of anatase TiO2 show promise for solar energy purposes as photoelectrodes in DSSCs and as photocatalysts to degrade organic dyes and to split water. Modifying the band structure by increasing the conduction band edge energy is specifically of interest for reducing protons in water. To this end, a new sol-gel method was developed for incorporating Zr-dopant in nanoporous anatase TiO2. The products follow Vegard’s law up to 20 atom%, exhibiting surface area of 79 m2/g and pore volume of 0.20 cm3/g with average pore diameter of 10.3 nm; the conduction band edge energy increased by 0.22 eV and the band gap increased by 0.1 eV.

In pursuit of a greener sol-gel route for TiO2 materials, a solution of TiOSO4 in water was explored. Success in obtaining a gel came by utilizing hydrogen peroxide as a ligand that suppressed precipitation reactions. Through modifying this sol-gel chemistry to obtain a solid acid, the new material hydrogen titanium phosphate sulfate, H1-xTi2(PO4)3-x(SO4)x, (0 < x < 0.5) was synthesized and characterized for the first time. From the reported synthetic route, this compound took the form of macroscopic agglomerates of nanoporous aggregates of nanoparticles around 20 nm and the product calcined at 600 °C exhibited surface area of 78 m2/g, pore volume of 0.22 cm3/g and an average pore width of 11 nm. This solid acid exhibits complete selectivity for the non-oxidative dehydrogenation of methanol to formaldehyde and hydrogen gas, with >50% conversion at 300 °C.

Finally, hierarchically meso-macroporous antimony doped tin oxide was synthesized with regular macropore size around 210 nm, determined by statistical dye trajectory tracking, and also with larger pores up to micrometers in size. The structure consisted of nanoparticles around 4 nm in size, with textural mesopores around 20 nm in diameter.
ContributorsMieritz, Daniel (Author) / Seo, Dong-Kyun (Thesis advisor) / Petuskey, William (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2016
150335-Thumbnail Image.png
Description
Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to

Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to electrodeposition was enabled by solution chemistries that provide "bottom-up" or superfilling capability of vias and trenches. While the process has been and is used widely, the actual mechanisms responsible for superfilling remain relatively unknown. This dissertation presents and discusses the background and results of experimental investigations that have been done using in situ electrochemical surface stress monitoring techniques to study the evolution of stress on Cu{111} thin film electrodes. Because of its extreme sensitivity to the structure on both the electrode and solution sides of the interface, surface stress monitoring as analytical technique is well suited for the study of electrodeposition. These ultra-high resolution stress measurements reveal the dynamic response of copper electrodes to a number of electrochemical and chemical experimental variables. In the case of constant current pulsed deposition and stripping, the surface stress evolution depends not only on the magnitude of the current pulse, but also shows a marked response to plating bath composition. The plating bath chemistries used in this work include (1) additive free, (2) deposition suppressing solutions that include polyethylene glycol (PEG) and sodium chloride (NaCl) as well as (3) full additive solution combinations which contain PEG, NaCl, and a one of two deposition accelerating species (bis-(sodiumsulfopropyl)disulfide (SPS) or mercaptopropane sulfonic acid (MPS)). The development of thin film stress is further investigated through a series of solution exchange experiments that correlate the magnitude of electrode exchange current density and the stress state of the film. Remarkably, stress changes as large as ~8.5 N/m are observed during solution exchanges at the open circuit potential. Overall, this research demonstrates that solution chemistry can have a large impact on thin film stress evolution, even for very small deposition thicknesses (e.g. <10 ML) or in the absence of net addition or removal of material from the electrode.
ContributorsHeaton, Thomas Stanley (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011