Matching Items (4)
Filtering by

Clear all filters

133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154210-Thumbnail Image.png
Description
This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured

This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon’s tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer.

Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed.

Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of several intermediates in the catalytic cycle of a model NiFe complex, a hypothetical reaction mechanism, which very well agrees with the observed experimental results, is proffered.

Future work related to this thesis may involve the systematic analysis of chemical reactivity in constrained geometries, a subject of importance if the context of enzymatic activity. Another, more intriguing direction is related to the fundamental issue of reformulating Marcus theory in terms of the molecular dielectric response function.
ContributorsKhezr Seddigh Mazinani, Shobeir (Author) / Mujica, Vladimiro (Thesis advisor) / Pilarisetty, Tarakeshwar (Committee member) / Angell, Charles A (Committee member) / Jones, Anne K (Committee member) / Arizona State University (Publisher)
Created2015
158604-Thumbnail Image.png
Description
Oxidoreductases catalyze transformations important in both bioenergetics and microbial technologies. Nonetheless, questions remain about how to tune them to modulate properties such as preference for catalysis in the oxidative or reductive direction, the potential range of activity, or coupling of multiple reactions. Using protein film electrochemistry, the features that control

Oxidoreductases catalyze transformations important in both bioenergetics and microbial technologies. Nonetheless, questions remain about how to tune them to modulate properties such as preference for catalysis in the oxidative or reductive direction, the potential range of activity, or coupling of multiple reactions. Using protein film electrochemistry, the features that control these properties are defined by comparing the activities of five [FeFe]-hydrogenases and two thiosulfate reductases. Although [FeFe]-hydrogenases are largely described as hydrogen evolution catalysts, the catalytic bias of [FeFe]-hydrogenases, i.e. the ratio of maximal reductive to oxidative activities, spans more than six orders of magnitude. At one extreme, two [FeFe]-hdyrogenases, Clostridium pasteuriaunum HydAII and Clostridium symbiosum HydY, are far more active for hydrogen oxidation than hydrogen evolution. On the other extreme, Clostridium pasteurianum HydAI and Clostridium acetobutylicum HydA1 have a neutral bias, in which both proton reduction and hydrogen oxidation are efficient. By investigating a collection of site-directed mutants, it is shown that the catalytic bias of [FeFe]-hydrogenases is not trivially correlated with the identities of residues in the primary or secondary coordination sphere. On the other hand, the catalytic bias of Clostridium acetobutylicum HydAI can be modulated via mutation of an amino acid residue coordinating the terminal [FeS] cluster. Simulations suggest that this change in catalytic bias may be linked to the reduction potential of the cluster.

Two of the enzymes examined in this work, Clostridium pasteurianum HydAIII and Clostridium symbiosum HydY, display novel catalytic properties. HydY is exclusively a hydrogen oxidizing catalyst, and it couples this activity to peroxide reduction activity at a rubrerythrin center in the same enzyme. On the other hand, CpIII operates only in a narrow potential window, inactivating at oxidizing potentials. This suggests it plays a novel physiological role that has not yet been identified. Finally, the electrocatalytic properties of Pyrobaculum aerophilum thiosulfate reductase with either Mo or W in the active site are compared. In both cases, the onset of catalysis corresponds to reduction of the active site. Overall, the Mo enzyme is more active, and reduces thiosulfate with less overpotential.
ContributorsWilliams, Samuel Garrett (Author) / Jones, Anne K (Thesis advisor) / Hayes, Mark A. (Committee member) / Trovitch, Ryan J (Committee member) / Arizona State University (Publisher)
Created2020