Matching Items (11)
Filtering by

Clear all filters

153317-Thumbnail Image.png
Description
Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy

Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA).

To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and 46% of the non-smoking units had traces of at least one of the nitrosamines.
ContributorsFrey, Sarah E (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Destaillats, Hugo (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2014
153286-Thumbnail Image.png
Description
The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and particulate organic material is poorly understood despite the importance for

The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and particulate organic material is poorly understood despite the importance for air pollution and climate. On one hand, gas phase species can be processed by fog/cloud droplets to form lower volatility species, which upon droplet evaporation lead to new aerosol mass, while on the other hand larger nonvolatile material can be degraded by in cloud oxidation to smaller molecular weight compounds and eventually CO2.

In this work High Performance Size Exclusion Chromatography coupled with inline organic carbon detection (SEC-DOC), Diffusion-Ordered Nuclear Magnetic Resonance spectroscopy (DOSY-NMR) and Fluorescence Excitation-Emission Matrices (EEM) were used to characterize molecular weight distribution, functionality and optical properties of atmospheric organic matter. Fogs, aerosols and clouds were studied in a variety of environments including Central Valley of California (Fresno, Davis), Pennsylvania (Selinsgrove), British Columbia (Whistler) and three locations in Norway. The molecular weight distributions using SEC-DOC showed smaller molecular sizes for atmospheric organic matter compared to surface waters and a smaller material in fogs and clouds compared to aerosol particles, which is consistent with a substantial fraction of small volatile gases that partition into the aqueous phase. Both, cloud and aerosol samples presented a significant fraction (up to 21% of DOC) of biogenic nanoscale material. The results obtained by SEC-DOC were consistent with DOSY-NMR observations.

Cloud processing of organic matter has also been investigated by combining field observations (sample time series) with laboratory experiments under controlled conditions. Observations revealed no significant effect of aqueous phase chemistry on molecular weight distributions overall although during cloud events, substantial differences were apparent between organic material activated into clouds compared to interstitial material. Optical properties on the other hand showed significant changes including photobleaching and an increased humidification of atmospheric material by photochemical aging. Overall any changes to atmospheric organic matter during cloud processing were small in terms of bulk carbon properties, consistent with recent reports suggesting fogs and clouds are too dilute to substantially impact composition.
ContributorsWang, Youliang (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
157459-Thumbnail Image.png
Description
Atmospheric deposition of iron (Fe) can limit primary productivity and carbon dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. Existing studies of burn-induced trace element mobilization have often collected both entrained soil

Atmospheric deposition of iron (Fe) can limit primary productivity and carbon dioxide uptake in some marine ecosystems. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from biomass burning, making it difficult to determine the actual source of aerosolized trace metals.

In order to better constrain the importance of biomass versus entrained soil as a source of trace metals in burn aerosols, small-scale burn experiments were conducted using soil-free foliage representative of a variety of fire-impacted ecosystems. The resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on cellulose filters using a high-volume air sampler equipped with an all-Teflon impactor. Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using inductively coupled plasma mass spectrometry (ICP-MS).

Results of this analysis show that less than 2% of Fe in plant biomass is likely mobilized as atmospheric aerosols during biomass burning events. The results of this study and estimates of annual global wildfire area were used to estimate the impact of biomass burning aerosols on total atmospheric Fe flux to the ocean. I estimate that foliage-derived Fe contributes 114 ± 57 Gg annually. Prior studies, which implicitly include both biomass and soil-derived Fe, concluded that biomass burning contributes approximately 690 Gg of Fe. Together, these studies suggest that fire-entrained soil particles contribute 83% (576 Gg) of Fe in biomass burning emissions, while plant derived iron only accounts for at most 17%.
ContributorsSherry, Alyssa M (Author) / Anbar, Ariel D (Thesis advisor) / Herckes, Pierre (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2019
153636-Thumbnail Image.png
Description
Particulate trace metals can enter the atmosphere as mineral dust, sea spray, anthropogenic emissions, biomass burning, etc. Once in the atmosphere they can undergo a variety of transformations including aqueous phase (cloud) processing, photochemical reactions, interact with gases, and ultimately deposit. Metals in aerosols are of particular interest because

Particulate trace metals can enter the atmosphere as mineral dust, sea spray, anthropogenic emissions, biomass burning, etc. Once in the atmosphere they can undergo a variety of transformations including aqueous phase (cloud) processing, photochemical reactions, interact with gases, and ultimately deposit. Metals in aerosols are of particular interest because of their natural and anthropogenic sources as well as their effects on local (human health) and global (climate change) scales. This work investigates the metal component of atmospheric particles and how it changes during physical and chemical processes at local, regional and global scales, through laboratory and field studies. In the first part of this work, the impact of local dust storms (haboobs) on ambient metal concentrations and speciation is investigated in Tempe, AZ. It was found that metal concentrations substantially increase (> 10 times) during these events before returning to pre-storm levels. In a second part of this work, the impact of fog processing on metal concentrations, solubility and speciation is examined through field observations in California’s Central Valley. The observations show that fog processing has a profound effect on local metal concentrations but the trends are not consistent between sites or even between events, indicating complex processes that need further investigation. For example, fogs have an effect on scavenging and solubility of iron in Davis, while in Fresno soluble iron content is indicative of the source of the aerosol. The last part of the thesis investigates the role of particle size on the solubilization of iron from mineral dust aerosols during global atmospheric transport through laboratory experiments. The experiments showed that mineralogy and pH have the greatest effect on iron solubility in atmospheric aerosols in general while particle size and photochemistry impact mainly the solubility of iron oxides.
ContributorsMarcotte, Aurelie Rose (Author) / Herckes, Pierre (Thesis advisor) / Anbar, Ariel (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2015
155090-Thumbnail Image.png
Description
New sol-gel routes were developed to fabricate transparent conducting oxide coatings for energy applications. Sol-gel synthesis was chosen because the metal oxide products have high surface area and porosity. Titanium sol-gel chemistry was the main focus of the studies, and the synthesis of macroporous antimony-doped tin oxide was

New sol-gel routes were developed to fabricate transparent conducting oxide coatings for energy applications. Sol-gel synthesis was chosen because the metal oxide products have high surface area and porosity. Titanium sol-gel chemistry was the main focus of the studies, and the synthesis of macroporous antimony-doped tin oxide was also explored. The surface chemistry and band characteristics of anatase TiO2 show promise for solar energy purposes as photoelectrodes in DSSCs and as photocatalysts to degrade organic dyes and to split water. Modifying the band structure by increasing the conduction band edge energy is specifically of interest for reducing protons in water. To this end, a new sol-gel method was developed for incorporating Zr-dopant in nanoporous anatase TiO2. The products follow Vegard’s law up to 20 atom%, exhibiting surface area of 79 m2/g and pore volume of 0.20 cm3/g with average pore diameter of 10.3 nm; the conduction band edge energy increased by 0.22 eV and the band gap increased by 0.1 eV.

In pursuit of a greener sol-gel route for TiO2 materials, a solution of TiOSO4 in water was explored. Success in obtaining a gel came by utilizing hydrogen peroxide as a ligand that suppressed precipitation reactions. Through modifying this sol-gel chemistry to obtain a solid acid, the new material hydrogen titanium phosphate sulfate, H1-xTi2(PO4)3-x(SO4)x, (0 < x < 0.5) was synthesized and characterized for the first time. From the reported synthetic route, this compound took the form of macroscopic agglomerates of nanoporous aggregates of nanoparticles around 20 nm and the product calcined at 600 °C exhibited surface area of 78 m2/g, pore volume of 0.22 cm3/g and an average pore width of 11 nm. This solid acid exhibits complete selectivity for the non-oxidative dehydrogenation of methanol to formaldehyde and hydrogen gas, with >50% conversion at 300 °C.

Finally, hierarchically meso-macroporous antimony doped tin oxide was synthesized with regular macropore size around 210 nm, determined by statistical dye trajectory tracking, and also with larger pores up to micrometers in size. The structure consisted of nanoparticles around 4 nm in size, with textural mesopores around 20 nm in diameter.
ContributorsMieritz, Daniel (Author) / Seo, Dong-Kyun (Thesis advisor) / Petuskey, William (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2016
141424-Thumbnail Image.png
Description

To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low‐income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize

To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low‐income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long‐term follow‐up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long‐term follow‐up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex).

ContributorsFrey, S.E. (Author) / Destaillats, H. (Author) / Cohn, S. (Author) / Ahrentzen, S. (Author) / Fraser, M.P. (Author)
Created2015
Description

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially outside of a marine environment. Focus on this environment is,

Quantifying halogen presence and speciation in particulate matter is crucial given the role atmospheric particulates play in transport and cycling. While some halogens (fluorine and chlorine) are often included in aerosol studies, iodine and bromine have rarely been examined, especially outside of a marine environment. Focus on this environment is, in part, due to the existence of biogenic marine sources for both halogens. However, examining iodine and bromine in an urban environment has the potential to provide key insights into the transport and processing of these species in the atmosphere. As Tempe is set within a desert environment, bromine concentration is expected to be relatively high due to its presence in Earth’s crust, while iodine is expected to exist in higher concentrations near the coast. To detect presence and concentration, ICP-MS analysis was performed on samples taken in Tempe, AZ as well as sites in Bakersfield, CA and Davis, CA, which yielded preliminary results in line with these expectations. A secondary set of samples were taken in Tempe, AZ during dust storms, haboobs, and winter holidays. CIC was used to determine the organic fraction. In doing so, this study aims to identify species present in an urban environment as well as potential transportation pathways.

ContributorsLoera, Lourdes (Author) / Herckes, Pierre (Thesis director) / Richert, Ranko (Committee member) / Fraser, Matthew (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
156640-Thumbnail Image.png
Description
Atmospheric particulate matter (PM) has a pronounced effect on our climate, and exposure to PM causes negative health outcomes and elevated mortality rates in urban populations. Reactions that occur in fog can form new secondary organic aerosol material from gas-phase species or primary organic aerosols. It is important to understand

Atmospheric particulate matter (PM) has a pronounced effect on our climate, and exposure to PM causes negative health outcomes and elevated mortality rates in urban populations. Reactions that occur in fog can form new secondary organic aerosol material from gas-phase species or primary organic aerosols. It is important to understand these reactions, as well as how organic material is scavenged and deposited, so that climate and health effects can be fully assessed. Stable carbon isotopes have been used widely in studying gas- and particle-phase atmospheric chemistry. However, the processing of organic matter by fog has not yet been studied, even though stable isotopes can be used to track all aspects of atmospheric processing, from particle formation, particle scavenging, reactions that form secondary organic aerosol material, and particle deposition. Here, carbon isotope analysis is used for the first time to assess the processing of carbonaceous particles by fog.

This work first compares carbon isotope measurements (δ13C) of particulate matter and fog from locations across the globe to assess how different primary aerosol sources are reflected in the atmosphere. Three field campaigns are then discussed that highlight different aspects of PM formation, composition, and processing. In Tempe, AZ, seasonal and size-dependent differences in the δ13C of total carbon and n-alkanes in PM were studied. δ13C was influenced by seasonal trends, including inversion, transport, population density, and photochemical activity. Variations in δ13C among particle size fractions were caused by sources that generate particles in different size modes.

An analysis of PM from urban and suburban sites in northeastern France shows how both fog and rain can cause measurable changes in the δ13C of PM. The δ13C of PM was consistent over time when no weather events occurred, but particles were isotopically depleted by up to 1.1‰ in the presence of fog due to preferential scavenging of larger isotopically enriched particles. Finally, the δ13C of the dissolved organic carbon in fog collected on the coast of Southern California is discussed. Here, temporal depletion of the δ13C of fog by up to 1.2‰ demonstrates its use in observing the scavenging and deposition of organic PM.
ContributorsNapolitano, Denise (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2018