Matching Items (52)
Filtering by

Clear all filters

135738-Thumbnail Image.png
Description
The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS),

The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS), a linear dynamic range of glutamate was detected with a slope of 36.604 z/ohm/[pg/mL], a lower detection limit at 12.417 pg/mL, correlation of 0.97, and an optimal binding frequency of 117.20 Hz. After running through a frequency sweep the binding frequency was determined based on the highest consistent reproducibility and slope. The sensor was found to be specific against literature researched non-targets glucose, albumin, and epinephrine and working in dilutions of whole blood up to a concentration of 25%. With the implementation of Nafion, the sensor had a 250% improvement in signal and 155% improvement in correlation in 90% whole blood, illustrating the promise of a working blood sensor. Future work includes longitudinal studies and utilizing mesoporous carbon as the immobilization platform and incorporating this as part of a continuous, multiplexed blood sensor with glucose oxidase.
ContributorsLam, Alexandria Nicole (Author) / LaBelle, Jeffrey (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135707-Thumbnail Image.png
Description
The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this

The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this research paper specifically reflects and analyzes the first stage of this study, the poster-based messaging campaign. 6th grade students received socially relevant messaging of juniors and seniors at ASU achieving their biomedical aspirations, and received information regarding four crucial themes of biomedical engineering via daily presentations and a website. Their learning was tracked over the course of the weeklong immersion program through a pre/post assessment. This data was then analyzed through the Wilcoxon matched pairs test to determine whether the change in biomedical engineering awareness was statistically significant. It was determined that a poster-based messaging campaign indeed increased awareness of socially relevant themes within biomedical engineering, and provided researchers with tangible ways to revise the study before a second round of implementation. The next stage of the study aims to explain biomedical engineering through engaging activities that stimulate making while emphasizing design-aesthetic appeal and engineering habits of mind such as creativity, teamwork, and communication.
ContributorsSwaminathan, Swetha Anu (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135620-Thumbnail Image.png
Description
A fetus physiologically relies on blood for nutrients given by the mother. Blood supply is provided to a fetus through an umbilical cord having the structure of two pulsatile arteries with smooth muscle surrounding a thin walled vein. The two arteries transport deoxygenated blood from the fetus in the direction

A fetus physiologically relies on blood for nutrients given by the mother. Blood supply is provided to a fetus through an umbilical cord having the structure of two pulsatile arteries with smooth muscle surrounding a thin walled vein. The two arteries transport deoxygenated blood from the fetus in the direction of the placenta while the one vein transports oxygenated blood in the direction of the fetus. This process of the movement of blood is continuous throughout the gestation cycle. Conventionally, there are two arterial coils for every one coil of the vein. Undercoiling and overcoiling of the arteries leads to fetal distress, resulting in researchers to speculate that there is a relationship between these geometries with altered blood flow patterns that may be deleterious to the fetus. The fluid dynamics of an umbilical cord artery blood flow has not been extensively modeled on a computer, meaning there is an absence of knowledge on the ideal pitch of the coiling of the umbilical cord arteries. In this study, I developed computer models with ANSYS Fluent containing fluid dynamic variables and boundary conditions including: density of blood, viscosity of blood, diameter of each artery, pitch of artery coil, flow rate in each artery, and inlet velocity. Care was taken to investigate the effect of fluid finite element size, through mesh refinement, to improve accuracy of the models. The finalized models illustrate velocity and stress distribution in a coiled artery, showing different patterns in a model representing normal as compared to abnormal pitch. Further study of the fluid mechanics in the coil of the umbilical cord arteries, may elucidate the correlation between ideal pitch and fetal distress.
ContributorsSeaney, Amanda Marie (Author) / VanAuker, Michael (Thesis director) / Lilien, Lawrence (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136869-Thumbnail Image.png
Description
The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of the growing interest in saliva, this project proposes a way to analyze sodium ion concentration in a saliva solution based

The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of the growing interest in saliva, this project proposes a way to analyze sodium ion concentration in a saliva solution based on its fluorescence level when in the presence of a sodium indicator dye and recorded with a smartphone camera. The dyed sample was placed in a specially designed housing to exclude all ambient light from the images. A source light of known wavelength was used to excite the fluorescent dye and the smartphone camera images recorded the emission light wavelengths. After analysis of the images using ImageJ, it was possible to create a model to determine the level of fluorescence based on sodium ion concentration. The smartphone camera image model was compared to readings from a standard fluorescence plate recorder to test the accuracy of the model. The study found that the model was accurate within 5 % as compared to the fluorescence plate recorder. Based on the results, it was concluded that the method and resulting model proposed in this study is a valid was to analyze saliva or other solutions for their sodium ion concentration via images recorded by a smartphone camera.
ContributorsSmith, Catherine Julia (Author) / Antonio, Garcia (Thesis director) / Caplan, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With

Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With the MindWave and an Arduino microcontroller processor, sonic output is attained by inputting the data collected by the MindWave, and in real time, outputting code that deciphers it into user constructed sound output. The input is scaled from values 0 to 100, measuring the ‘attentive’ state of the mind by observing alpha waves, and distributing this information to the microcontroller. The output of sound comes from sourcing this into the Musical Instrument Shield and varying the musical tonality with different chords and delay of the notes. The manipulation of alpha states highlights the control or lack thereof for the performer and touches on the question of how much control over the output there really is, much like the experimentalist Alvin Lucier displayed with his concepts in brainwave music.
ContributorsQuach, Andrew Duc (Author) / Helms Tillery, Stephen (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137088-Thumbnail Image.png
Description
Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom

Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom made stencils for a 4x1 array of 3-electrode electrochemical cells. Cyclic voltammetry was performed to find the electrical potential corresponding to the greatest current response and the experiments were conducted using amperometric current-time mode (AMP*i-t). The physical limitations of SPEs as well as the detection limitations of the target, such as pH and temperature were tested. A concentration gradient of the target was fitted with a linear curve (R2 0.99), and a lower limit of detection of 14.5 μM. It was also found that both pH and temperature affect the current produced by acetaminophen at a fixed concentration, and that the sensors can detect target in a continuous flow. A flow apparatus consisting of an inlet and effluent pipe served as the flow model into which a rolled up flexible electrode array was inserted. The broader goal of this research is to develop a highly sensitive electrode array on flexible substrates which can detect multiple targets simultaneously. Acetaminophen was chosen due to its electro-active properties and its presence in most public water lines in the United States.
ContributorsMaxwell, Stephanie Ann (Author) / LaBelle, Jeffrey (Thesis director) / Allee, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137074-Thumbnail Image.png
Description
Medial compartment knee osteoarthritis (OA) is a disease whose severity has been associated with the peak adduction moment during walking (pKAM). Unfortunately, measuring patients' pKAM to track their therapy progress involves the use of a gait laboratory which is expensive and time intensive. This study aimed to develop and assess

Medial compartment knee osteoarthritis (OA) is a disease whose severity has been associated with the peak adduction moment during walking (pKAM). Unfortunately, measuring patients' pKAM to track their therapy progress involves the use of a gait laboratory which is expensive and time intensive. This study aimed to develop and assess a regression method to predict the pKAM using only plantar pressure measurements. This approach could greatly reduce the burden of evaluating pKAM.
ContributorsThomas, Kevin Andrew (Author) / Hinrichs, Richard (Thesis director) / Harper, Erin (Committee member) / Favre, Julien (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137120-Thumbnail Image.png
Description
Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be

Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be addressed. As such, this paper provides an overview of the effects of biomedical technology in science fiction films. The discussions in this paper will analyze the different portrayals of the technology in the viewed cinematic pieces and the effects they have on the characters in the film. The discussion will begin with the films that have technology based in Genetic Engineering. This will then be followed by a discussion of the biomedical technology based in the fields of Endocrinology; Reanimation; Preservation; Prosthetics; Physical Metamorphosis; Super-Drugs and Super-Viruses; and Diagnostic, Surgical, and Monitoring Equipment. At the end of this paper movie summaries are provided to assist in clarifying plot details.
ContributorsGrzybowski, Amanda Ann (Author) / Foy, Joseph (Thesis director) / Facinelli, Diane (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137769-Thumbnail Image.png
Description
Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in

Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in Amp i-t, a quantifiable current can be read and the force applied can be calculated. Two common electrochemical techniques in which current is measured, cyclic voltammetry(CV) and amperometric i-t(Amp i-t), were used. A compressible sensor capable of transducing a force and acquiring feedback was created.
ContributorsFeldman, Austin Marc (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05