Matching Items (24)
Filtering by

Clear all filters

151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
Description
This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project

This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses correlate strongly with adsorption charge. Electrocatalytic oxidation of CO on Pt{111} and Ru/Pt{111} gives a tensile surface stress. A numerical method was developed to separate both current and stress into background and active components. Applying this model to the CO oxidation signal on Ru{0001} gives a tensile surface stress and elucidates the rate limiting steps on all three electrodes. The enhanced catalysis of Ru/Pt{111} is confirmed to be bi-functional in nature: Ru provides adsorbed hydroxide to Pt allowing for rapid CO oxidation. The majority of Li-ion batteries have anodes consisting of graphite particles with polyvinylidene fluoride (PVDF) as binder. Intercalation of Li into graphite occurs in stages and produces anisotropic strains. As batteries have a fixed size and shape these strains are converted into mechanical stresses. Conventionally staging phenomena has been observed with X-ray diffraction and collaborated electrochemically with the potential. Work herein shows that staging is also clearly observed in stress. The Li staging potentials as measured by differential chronopotentiometry and stress are nearly identical. Relative peak heights of Li staging, as measured by these two techniques, are similar during reduction, but differ during oxidation due to non-linear stress relaxation phenomena. This stress relaxation appears to be due to homogenization of Li within graphite particles rather than viscous flow of the binder. The first Li reduction wave occurs simultaneously with formation of a passivating layer known as the solid electrolyte interphase (SEI). Preliminary experiments have shown the stress of SEI formation to be tensile (~+1.5 MPa).
ContributorsMickelson, Lawrence (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Venables, John (Committee member) / Arizona State University (Publisher)
Created2011
151233-Thumbnail Image.png
Description
The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal

The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal particles is presented. The stability of Pt particles was studied by in situ electrochemical scanning tunneling microscopy (ECSTM). It is shown that small Pt particles dissolve at a lower potential than the corresponding bulk material. For the alloy particles, two size ranges of AuAg particles, ∼4 nm and ∼45 nm in diameter, were synthesized by co–reduction of the salts of Au and Ag from an aqueous phase. The alloy particles were dealloyed at a series of potential by chronoamperometry in acid, and the resulting morphology and composition were characterized by electron microscopy, energy dispersive X–ray spectroscopy (EDX). In the case of the smaller particles, only surface dealloying occurred yielding a core–shell structure. A porous structure was observed for the larger particles when the potential was larger than a critical value that was within 50 mV of the thermodynamic prediction.
ContributorsLi, Xiaoqian (Author) / Sieradzki, Karl (Thesis advisor) / Crozier, Peter (Committee member) / Buttry, Daniel (Committee member) / Friesen, Cody (Committee member) / Arizona State University (Publisher)
Created2012
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136366-Thumbnail Image.png
Description
One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS.

One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS. Previous studies have shown that activation of the adenosine receptor signaling pathway through the use of agonists has been demonstrated to increase BBB permeability. For example, regadenoson is an adenosine A2A receptor agonist that has been shown to disrupt the BBB and allow for increased drug uptake in the CNS. The goal of this study was to verify this property of regadenoson. We hypothesized that co-administration of regadenoson with a non-brain penetrant macromolecule would facilitate its entry into the central nervous system. To test this hypothesis, healthy mice were administered regadenoson or saline concomitantly with a fluorescent dextran solution. The brain tissue was either homogenized to measure quantity of fluorescent molecule, or cryosectioned for imaging with confocal fluorescence microscopy. These experiments did not identify any significant difference in the amount of fluorescence detected in the brain after regadenoson treatment. These results contradict those of previous studies and highlight potential differences in injection methodology, time windows, and properties of brain impermeant molecules.
ContributorsWohlleb, Gregory Michael (Author) / Sirianni, Rachael (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
132475-Thumbnail Image.png
Description
The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is

The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is vital for a patient’s recovery of motor function which is time demanding and taxing on the physical therapist. Wearable robotics have been proven to improve functional outcomes in gait rehabilitation by providing controlled high dosage and high-intensity training. Accurate control strategies for assistive robotic exoskeletons are vital for repetitive high precisions assistance for cerebral plasticity to occur.

This thesis presents a preliminary determination and design of a control algorithm for an assistive ankle device developed by the ASU RISE Laboratory. The assistive ankle device functions by compressing a spring upon heel strike during gait, remaining compressed during mid-stance and then releasing upon initiation of heel-off. The relationship between surface electromyography and ground reactions forces were used for identification of user-initiated heel-off. The muscle activation of the tibialis anterior combined with the ground reaction forces of the heel pressure sensor generated potential features that will be utilized in the revised control algorithm for the assistive ankle device. Work on this project must proceed in order to test and validate the revised control algorithm to determine its accuracy and precision.
ContributorsGaytan-Jenkins, Daniel Rinaldo (Author) / Zhang, Wenlong (Thesis director) / Tyler, Jamie (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137315-Thumbnail Image.png
Description
In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz.

In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz. At this frequency a logarithmic relationship between concentration and impedance (Z/ohm) was established creating a concentration calibration curve with a slope of 211 ohm/ln(pg mL-1), an R-squared value of 0.986 and a lower limit of detection of 742 fg mL-1. The specificity and cross-reactivity of the antibody with other hormones was tested through interferent and non-target experiments. Signal-to-noise ratio analysis verified that anti-17β-estradiol exhibited minimal chemical reactions with other hormones (SNR< 3) in non-target experiments. Additionally, there were minimal changes in the amount of signal collected during interferent testing, with albumin and follicle stimulating hormone having SNR values greater than 3. These results, along with the unique frequency response of the antibody-target binding reaction, allow for the possibility of using anti-17β-estradiol and β-estradiol for detecting multiple fertility biomarkers on a single sensor.
ContributorsSmith, Victoria Ann (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137088-Thumbnail Image.png
Description
Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom

Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom made stencils for a 4x1 array of 3-electrode electrochemical cells. Cyclic voltammetry was performed to find the electrical potential corresponding to the greatest current response and the experiments were conducted using amperometric current-time mode (AMP*i-t). The physical limitations of SPEs as well as the detection limitations of the target, such as pH and temperature were tested. A concentration gradient of the target was fitted with a linear curve (R2 0.99), and a lower limit of detection of 14.5 μM. It was also found that both pH and temperature affect the current produced by acetaminophen at a fixed concentration, and that the sensors can detect target in a continuous flow. A flow apparatus consisting of an inlet and effluent pipe served as the flow model into which a rolled up flexible electrode array was inserted. The broader goal of this research is to develop a highly sensitive electrode array on flexible substrates which can detect multiple targets simultaneously. Acetaminophen was chosen due to its electro-active properties and its presence in most public water lines in the United States.
ContributorsMaxwell, Stephanie Ann (Author) / LaBelle, Jeffrey (Thesis director) / Allee, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05