Matching Items (23)
Filtering by

Clear all filters

150912-Thumbnail Image.png
Description
Background: Obesity is considered one of the most serious public health issues worldwide. Small, feasible lifestyle changes are necessary to obtain and maintain weight loss. Clinical evidence is inconclusive about whether meal preloading is an example of a small change that could potentially increase the likelihood of weight loss and

Background: Obesity is considered one of the most serious public health issues worldwide. Small, feasible lifestyle changes are necessary to obtain and maintain weight loss. Clinical evidence is inconclusive about whether meal preloading is an example of a small change that could potentially increase the likelihood of weight loss and weight maintenance. Objective: The aim of this study is to determine if consuming 23 grams of peanuts, as a meal preload, before a carbohydrate-rich meal will lower post prandial glycemia and insulinemia and increase satiety in the 2 hour period after a carbohydrate-rich meal. Design: 15 healthy, non-diabetic adults without any known peanut or tree nut allergies were recruited from a campus community. A randomized, 3x3 block crossover design was used. The day prior to testing participants refrained from vigorous activity and consumed a standard dinner meal followed by a 10 hour fast. Participants reported to the test site in the fasted state to complete one of three treatment meals: control (CON), peanut (NUT), or grain bar (BAR) followed one hour later by a carbohydrate-rich meal. Satiety, glucose and insulin were measured at different time points throughout the visit. Each participant had a one-week washout period between visits. Results: Glucose curves varied between treatments (p=.023). Blood glucose was significantly higher one hour after ingestion of the grain bar compared to the peanut and control treatments (p<.001). At 30 minutes after the meal, the control glucose was significantly higher than for the peanut or grain bar (p=.048). Insulin did vary significantly between treatments (p<.001). The insulin change one hour after grain bar consumption was significantly higher than after the peanut or control at the same time point (p<.001). The change in insulin one hour after peanut consumption was significantly higher than for the control treatment (p=.002). Overall satiety, expressed as the 180 minute AUC, differed significantly between treatments (p=.001). One hour after preload consumption, peanut and bar consumption was associated with greater satiety than the water control (p<.001). At 30 minutes post-meal, the grain bar was associated with greater satiety versus the water control (p=.049). The bar was also associated with greater satiety versus peanut and control at 60 and 90 minutes post-meal (p=.003 and .034, respectively). At 120 minutes post-meal, the final satiety measurement, the bar was still associated with greater satiety than the peanut preload (p=.023). Total energy intake, including test meal, on treatment days did not differ significantly between treatment (p=.233). Conclusions: Overall satiety, blood glucose and blood insulin levels differed at different time points depending on treatment. Both meal preloads increased overall satiety. However, grain bar ingestion resulted in sustained satiety, greater than the peanut preload. Grain bar ingestion resulted in an immediate glycemic and insulinemic response. However, the response was not sustained after the test meal was ingested. The results of this study suggest that a low-energy, carbohydrate-rich meal preload may have a positive impact on weight maintenance and weight loss by initiating a sustained increase in overall satiety. More research is needed to confirm these findings.
ContributorsFleming, Katie R (Author) / Johnston, Carol (Thesis advisor) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2012
135452-Thumbnail Image.png
Description
According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects.

According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects. Lifestyle and diet modifications can be just as effective as medications in helping to improve glycemic control, and prevent diabetes or improve the condition in those who have it. Studies have demonstrated that consuming vinegar with carbohydrates can positively impact postprandial glycemia in diabetic and healthy individuals. Continuous vinegar intake with meals may even reduce fasting blood glucose levels. Since vinegar is a primary ingredient in mustard, the purpose of this study was to determine if mustard consumption with a carbohydrate-rich meal (bagel and fruit juice) had an effect on the postprandial blood glucose levels of subjects. The results showed that mustard improved glycemia by 17% when subjects consumed the meal with mustard as opposed to the control. A wide variety of vinegars exists. The defining ingredient in all vinegars is acetic acid, behind the improvement in glycemic response observed with vinegar ingestion. Vinegar-containing foods range from mustard, to vinaigrette dressings, to pickled foods. The benefits of vinegar ingestion with carbohydrates are dose-dependent, meaning that adding even small amounts to meals can help. Making a conscious effort to incorporate these foods into meals, in addition to an overall healthy lifestyle, could provide an additional tool for diabetics and nondiabetics alike to consume carbohydrates in a healthier manner.
ContributorsJimenez, Gabriela (Author) / Johnston, Carol (Thesis director) / Lespron, Christy (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136366-Thumbnail Image.png
Description
One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS.

One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS. Previous studies have shown that activation of the adenosine receptor signaling pathway through the use of agonists has been demonstrated to increase BBB permeability. For example, regadenoson is an adenosine A2A receptor agonist that has been shown to disrupt the BBB and allow for increased drug uptake in the CNS. The goal of this study was to verify this property of regadenoson. We hypothesized that co-administration of regadenoson with a non-brain penetrant macromolecule would facilitate its entry into the central nervous system. To test this hypothesis, healthy mice were administered regadenoson or saline concomitantly with a fluorescent dextran solution. The brain tissue was either homogenized to measure quantity of fluorescent molecule, or cryosectioned for imaging with confocal fluorescence microscopy. These experiments did not identify any significant difference in the amount of fluorescence detected in the brain after regadenoson treatment. These results contradict those of previous studies and highlight potential differences in injection methodology, time windows, and properties of brain impermeant molecules.
ContributorsWohlleb, Gregory Michael (Author) / Sirianni, Rachael (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
132475-Thumbnail Image.png
Description
The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is

The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is vital for a patient’s recovery of motor function which is time demanding and taxing on the physical therapist. Wearable robotics have been proven to improve functional outcomes in gait rehabilitation by providing controlled high dosage and high-intensity training. Accurate control strategies for assistive robotic exoskeletons are vital for repetitive high precisions assistance for cerebral plasticity to occur.

This thesis presents a preliminary determination and design of a control algorithm for an assistive ankle device developed by the ASU RISE Laboratory. The assistive ankle device functions by compressing a spring upon heel strike during gait, remaining compressed during mid-stance and then releasing upon initiation of heel-off. The relationship between surface electromyography and ground reactions forces were used for identification of user-initiated heel-off. The muscle activation of the tibialis anterior combined with the ground reaction forces of the heel pressure sensor generated potential features that will be utilized in the revised control algorithm for the assistive ankle device. Work on this project must proceed in order to test and validate the revised control algorithm to determine its accuracy and precision.
ContributorsGaytan-Jenkins, Daniel Rinaldo (Author) / Zhang, Wenlong (Thesis director) / Tyler, Jamie (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133623-Thumbnail Image.png
Description
The purpose of this cookbook was to provide students that live in the Barrett dorms with easily accessible nutritious meals that prevent total reliance on the dorm's dining hall throughout the year. Limitations of this research included staying within budget, the availability of near-by grocery stores, meal preparation time, and

The purpose of this cookbook was to provide students that live in the Barrett dorms with easily accessible nutritious meals that prevent total reliance on the dorm's dining hall throughout the year. Limitations of this research included staying within budget, the availability of near-by grocery stores, meal preparation time, and the types of appliances which can be used in dorms. While living in dorms many students may find that dining halls have a large variety of food offerings that are consistently available. Although there are many options, they are not necessarily the healthiest choices. In addition to health these options rarely change. For safety reasons students are limited to dorm room appliance options that include a mini-fridge and a microwave. There is not a lot of cooking you can do with just a microwave, but with the proper knowledge it is surprisingly enough to make a great meal. In addition to appliances students can utilize cutting boards, plates, and plastic utensils, but if students are not educated about cooking diverse meals it is easy to venture toward unhealthy meal choices. Attending college can be costly. Expenses of tuition, books, supplies and living fees can add up quickly. Students are always in need of healthy meal options that are also healthy for their bank accounts. This cookbook contains affordable, healthy, and quick to make recipes. Virtually everyone who has ever been a student usually has a weekly/monthly budgetary amount to spend and cooking their own meals in the dorms will turn out to be much cheaper alternative to having dining hall meals every day. It was interesting to create a week full of meal preps for breakfast, lunch and dinner- including snacks with various alternatives. Not every student has a vehicle in which they can get necessary ingredients for cooking; Therefore, this cookbook has a grocery store map that includes address and store hours to aid students in choosing closer more convenient locations. In college, the journey to a healthy lifestyle is not easy. There are many ways to keep on track and follow the routine which works for both the body and the mind. Following the easy recipes within this cook book will minimize the risk of freshman 15 weight gain and decrease the time spent on both cooking and coming up with healthy meal ideas. These meals are uncomplicated, affordable, and take little to no effort. Barrett CookBook for Dorms main mission was to provide students with a foundation for a nutritional, flexible, and stress-free dining environment without the added stress of constantly thinking about what goes into their bodies.
ContributorsCherkaskykh, Alisa A. (Author) / Grgich, Traci (Thesis director) / Johnston, Carol (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137315-Thumbnail Image.png
Description
In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz.

In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz. At this frequency a logarithmic relationship between concentration and impedance (Z/ohm) was established creating a concentration calibration curve with a slope of 211 ohm/ln(pg mL-1), an R-squared value of 0.986 and a lower limit of detection of 742 fg mL-1. The specificity and cross-reactivity of the antibody with other hormones was tested through interferent and non-target experiments. Signal-to-noise ratio analysis verified that anti-17β-estradiol exhibited minimal chemical reactions with other hormones (SNR< 3) in non-target experiments. Additionally, there were minimal changes in the amount of signal collected during interferent testing, with albumin and follicle stimulating hormone having SNR values greater than 3. These results, along with the unique frequency response of the antibody-target binding reaction, allow for the possibility of using anti-17β-estradiol and β-estradiol for detecting multiple fertility biomarkers on a single sensor.
ContributorsSmith, Victoria Ann (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137088-Thumbnail Image.png
Description
Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom

Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom made stencils for a 4x1 array of 3-electrode electrochemical cells. Cyclic voltammetry was performed to find the electrical potential corresponding to the greatest current response and the experiments were conducted using amperometric current-time mode (AMP*i-t). The physical limitations of SPEs as well as the detection limitations of the target, such as pH and temperature were tested. A concentration gradient of the target was fitted with a linear curve (R2 0.99), and a lower limit of detection of 14.5 μM. It was also found that both pH and temperature affect the current produced by acetaminophen at a fixed concentration, and that the sensors can detect target in a continuous flow. A flow apparatus consisting of an inlet and effluent pipe served as the flow model into which a rolled up flexible electrode array was inserted. The broader goal of this research is to develop a highly sensitive electrode array on flexible substrates which can detect multiple targets simultaneously. Acetaminophen was chosen due to its electro-active properties and its presence in most public water lines in the United States.
ContributorsMaxwell, Stephanie Ann (Author) / LaBelle, Jeffrey (Thesis director) / Allee, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134697-Thumbnail Image.png
Description
This paper begins by exploring the prior research that has shown how eating a plant-based diet can affect the human body. Some of these effects include: improved mood, energy levels, gut health, alkalized urine pH, as well as, lowering the risk of hormonal imbalance, kidney stones, diabetes, cancer, and coronary

This paper begins by exploring the prior research that has shown how eating a plant-based diet can affect the human body. Some of these effects include: improved mood, energy levels, gut health, alkalized urine pH, as well as, lowering the risk of hormonal imbalance, kidney stones, diabetes, cancer, and coronary artery disease. The worries that generally accompany eating a fully vegan diet, which include, malnutrition and protein deficiency, are also addressed in the background research. In attempt to build upon previous research, a weeklong experiment was conducted testing 3 different factors, which include: gut health, improved mood, and urine pH. Mood states were measured quantifiably using a POMS (profile of mood states) test. Gut health was measured using several factors, including consistency and frequency of bowel movements, as well as, GI discomfort. Two 24-hour urine samples were collected from each of the subjects to compare the pH of their urine before and after the study. The sample size of this study included 15 healthy, non-smoking, subjects, between 18-30 years of age. The subjects were split up into 3 stratified random samples, including, an omnivore control group, vegan control group, and experimental vegan group. The experimental vegans had eaten meat/eggs/dairy regularly for their whole lives before the start of the study, and had consented to eating a vegan diet for the entirety of one week. While the data from the control groups remained mostly constant as predicted, the results from the experimental group were shown to have a significantly better mood (P<0.05) after one week, as well as, a significantly higher urine pH (P < 0.025) than they did before the study. However, the experimental group did not show a significant change in stool frequency, consistency, or GI discomfort within one week. The vegan control group, which included subjects who had eaten a plant-based diet for 1-3 years, had much better gut health scores. This leads us to believe that the vegan gut microbiome takes much longer to transform into than just one week unlike urine pH and mood, which can take as little as one week. These findings warrant further investigation.
ContributorsMacias, Lindsey Kaori (Author) / Johnston, Carol (Thesis director) / Katsanos, Christos (Committee member) / Harrington Bioengineering Program (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05