Matching Items (19)
Filtering by

Clear all filters

136591-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.
ContributorsStadie, Mikaela Johanna (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
137115-Thumbnail Image.png
Description
In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for

In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for all cells were life time, thermal cycle/time based performance, and failure modes for cells. Two types of DFFC, anode and electrolyte supported, were used with two different fuel feed streams of propane/isobutene and ethanol. Several test configurations consisting of single cells, as well as stacked systems were tested to show how cell performed and degraded over time. All tests were run using a Biologic VMP3 potentiostat connected to a cell placed within the flame of a modified burner MSR® Wisperlite Universal stove. The maximum current and power output seen by any electrolyte supported DFFCs tested was 47.7 mA/cm2 and 9.6 mW/cm2 respectively, while that generated by anode supported DFFCs was 53.7 mA/cm2 and 9.25 mW/cm2 respectively with both cells operating under propane/isobutene fuel feed streams. All TECs tested dramatically outperformed both constructions of DFFC with a maximum current and power output of 309 mA/cm2 and 80 mW/cm2 respectively. It was also found that electrolyte supported DFFCs appeared to be less susceptible to degradation of the cell microstructure over time but more prone to cracking, while anode supported DFFCs were dramatically less susceptible to cracking but exhibited substantial microstructure degradation and shorter usable lifecycles. TECs tested were found to only be susceptible to overheating, and thus were suggested for use with electrolyte supported DFFCs in remote powering applications.
ContributorsTropsa, Sean Michael (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
130865-Thumbnail Image.png
Description

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability of fossil fuel resources eventually running out, and the economic and job creation potential which solar energy holds. Additionally, it is important to note that the best course of action will involve a split of funding between current solar rollout and energy grid updating, and the R&D listed in this research. Upon examination, it can be seen that an energy revolution, led by a federal solar jobs program and a Green New Deal, would be both an ethically and economically beneficial solution. A transition from existing fossil fuel infrastructure to renewable, solar-powered infrastructure would not only be possible but highly beneficial in many aspects, including massive job creation, a more affordable, renewable energy solution to replace coal-fired plants, and no fuel spending or negotiation required.<br/>When examining which areas of solar improvement to focus on for R&D funding, four primary areas were identified, with solutions presented for each. These areas for improvement are EM capture, EM conversion efficiency, energy storage capacity, and the prevention of overheating. For each of these areas of improvement, affordable solutions that would greatly improve the efficiency and viability of solar as a primary energy source were identified. The most notable area that should be examined is solar storage, which would allow solar PV panels to overcome their greatest real and perceived obstacle, which is the inconsistent power generation. Solar storage is easily attainable, and with enough storage capacity, excess solar energy which would otherwise be wasted during the day can be stored and used during the night or cloudy weather as necessary. Furthermore, the implementation of highly innovative solutions, such as agrivoltaics, would allow for a solar revolution to occur.

ContributorsWhitlow, Hunter Marshall (Author) / Fong, Benjamin (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131046-Thumbnail Image.png
Description
As Energy needs grow and photovoltaics expand to meet humanity’s demand for electricity, waste modules will start building up. Tao et. al. propose a recycling process to recover all precious solar cell materials, a process estimated to generate a potential $15 billion in revenue by 2050. A key part of

As Energy needs grow and photovoltaics expand to meet humanity’s demand for electricity, waste modules will start building up. Tao et. al. propose a recycling process to recover all precious solar cell materials, a process estimated to generate a potential $15 billion in revenue by 2050. A key part of this process is metal recovery, and specifically, silver recovery. Silver recovery via electrowinning was studied using a hydrofluoric acid leachate/electrolyte. Bulk electrolysis trials were performed at varied voltages using a silver working electrode, silver pseudo-reference electrode and a graphite counter-electrode. The highest mass recovery achieved was 98.8% which occurred at 0.65 volts. Product purity was below 90% for all trials and coulombic efficiency never reached above 20%. The average energy consumption per gram of reduced silver was 2.16kWh/kg. Bulk electrolysis indicates that parasitic reactions are drawing power from the potentiostat and limiting the mass recovery of the system. In order to develop this process to the practical use stage, parasitic reactions must be eliminated, and product purity and power efficiency must improve. The system should be run in a vacuum environment and the reduction peaks in the cell should be characterized using cyclic voltammetry.
ContributorsTezak, Cooper R (Author) / Tao, Meng (Thesis director) / Phelan, Patrick (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132393-Thumbnail Image.png
Description
Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial

Engineering has historically been dominated by White men. However, in modern history, engineering is becoming more diverse as the opportunity to pursue engineering has become accessible to people of all races and genders. Yet, college ready high school students from nontraditional backgrounds—women, ethnic minorities, first-generation-to-college students, and those with financial need—often lack exposure to engineering, thus reducing their likelihood to pursue a career in this field. To create engineering learning experiences that can be expanded to a traditional high school science classroom, the Young Engineers Shape the World program at Arizona State University was consulted. The Young Engineers Shape the World program encourages women, notably the most underrepresented group in the engineering field, as well as other students of diverse backgrounds, to pursue engineering. The goal of this effort was to create a 3-contact hour chemical engineering based learning experience to help students in grades 10-11 learn about an application of chemical engineering. Using knowledge of chemical engineering, a soil pH testing activity was created, simulating a typical high school chemistry science experiment. In addition to measuring pH, students were asked to build a modern garden that contained a physical barrier that could protect the garden from acid rain while still allowing sunlight to reach the plant. Student feedback was collected in the form of an experience evaluation survey after each experience. Students found that the soil-moisture quality testing and design of a protective barrier was engaging. However, an iterative curriculum redesign-implement-evaluate effort is needed to arrive at a robust chemical engineering based design learning experience.
ContributorsOtis, Timothy Kevin (Author) / Ganesh, Tirupalavanam (Thesis director) / Schoepf, Jared (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131779-Thumbnail Image.png
Description
This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with laryngeal defects. It was determined that it is feasible to incorporate exosomes into an electrospun scaffold. This addition of exosomes

This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with laryngeal defects. It was determined that it is feasible to incorporate exosomes into an electrospun scaffold. This addition of exosomes does alter the scaffold properties, by decreasing the average fiber diameter by roughly a factor of three and increasing the average modulus by roughly a factor of two. Cells were cultured on a scaffold with exosomes incorporated and were found to proliferate more than on a scaffold alone. This research lays the groundwork for further developing and optimizing an electrospun scaffold with exosomes incorporated to elicit a tissue regenerative response.
ContributorsKennedy, Maeve (Author) / Pizziconi, Vincent (Thesis director) / McPhail, Michael (Committee member) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131736-Thumbnail Image.png
Description
Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption of twelve narcotics within a collegiate setting from January 2018 to May 2018 at a Southwestern U.S. university. The present follow-up study was designed to identify potential changes in the consumption patterns of prescription and illicit drugs as the academic year progressed. Samples were collected from two sites that capture nearly 100% of campus-generated wastewater. Seven consecutive 24-hour composite raw wastewater samples were collected each month (n = 68) from both locations. The study identified the average consumption of select narcotics, in units of mg/day/1000 persons in the following order: cocaine (528 ± 266), heroin (404 ± 315), methylphenidate (343 ± 396), amphetamine (308 ±105), ecstasy (MDMA; 114 ± 198), oxycodone (57 ± 28), methadone (58 ± 73), and codeine (84 ± 40). The consumption of oxycodone, methadone, heroin, and cocaine were identified as statistically lower in the Spring 2018 semester compared to the Fall 2017. Universities may need to increase drug education for the fall semester to lower the consumption of drugs in that semester. Data from this research encompasses both human health and the built environment by evaluating public health through collection of municipal wastewater, allowing public health officials rapid and robust narcotic consumption data while maintaining the anonymity of the students, faculty, and staff.
ContributorsCarlson, Alyssa Rose (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / School of Human Evolution & Social Change (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132913-Thumbnail Image.png
Description
The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The

The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The results of this study found that specific skills and activities showed significant gender and age differences for each of the three measures. Significant findings showed that younger students (kindergarten through second grade) found many of the engineering-related skills and activities more interesting than the older students (third through fifth grade); however, the older students rated more of the skills and activities as being important. Gender differences showed that girls typically rated themselves as being more competent, more interested in, and valuing the skills and activities that pertained more to mindset ideas, such as learning from your mistakes and failures or not giving up, whereas boys rated themselves higher in more of the hands-on activities, such as building with things like legos, blocks, and k’nex.
ContributorsHandlos, Jamie Lynn Harte (Author) / Miller, Cindy (Thesis director) / Reisslein, Martin (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05