Matching Items (7)
Filtering by

Clear all filters

150701-Thumbnail Image.png
Description
The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties

The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties are at the forefront of organic solar energy conversion research. In the work presented herein, porphyrin and organometallic dyes with widely-varied properties were studied for solar energy applications. In one project, porphyrins and porphyrin-fullerene dyads with aniline-like features were polymerized via electrochemical methods into semiconductive thin films. These were shown to have high visible light absorption and stable physical and electrochemical properties. However, experimentation using porphyrin polymer films as both the light absorber and semiconductor in a photoelectrochemical cell showed relatively low efficiency of converting absorbed solar energy into electricity. In separate work, tetra-aryl porphyrin derivatives were examined in conjunction with wide-bandgap semiconductive oxides TiO2 and SnO2. Carboxylic acid-, phosphonic acid-, and silatrane-functionalized porphyrins were obtained or synthesized for attachment to the metal oxide species. Electrochemical, photophysical, photoelectrochemical, and surface stability studies of the porphyrins were performed for comparative purposes. The order of surface linkage stability on TiO2 in alkaline conditions, from most stable to least, was determined to be siloxane > phosphonate > carboxylate. Finally, porphyrin dimers fused via their meso and beta positions were synthesized using a chemical oxidative synthesis with a copper(II) oxidant. The molecules exhibit strong absorption in the visible and near-infrared spectral regions as well as interesting electrochemical properties suggesting possible applications in light harvesting and redox catalysis.
ContributorsBrennan, Bradley J (Author) / Gust, Devens (Thesis advisor) / Moore, Thomas A. (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012
150763-Thumbnail Image.png
Description
Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties

Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties of the proteins derived from GFP allows increased complexity of experiments and consequently, information content of the data acquired. The importance of arginine-96 in GFP has been widely discussed. It has been established as vital to the kinetics of chromophore maturation and to the overall fold of GFP before post-translational self-modification. Its value during chromophore maturation has been demonstrated by mutational studies and a hypothesis proposed for its catalytic function. A strategy is described herein to determine its pKa value via NMR to determine whether Arg96 possesses the chemical capacity to function as a general base during GFP chromophore biosynthesis. Förster resonance energy transfer (FRET) techniques commonly employ Enhanced Cyan Fluorescent Proteins (ECFPs) and their derivatives as donor fluorophores useful in real-time, live-cell imaging. These proteins have a tryptophan-derived chromophore that emits light in the blue region of the visible spectrum. Most ECFPs suffer from fluorescence instability, which, coupled with their low quantum yield, makes data analysis unreliable. The structural heterogeneity of these proteins also results in undesirable photophysical characteristics. Recently, mCerulean3, a ten amino acid mutant of ECFP, was introduced as an optimized FRET-donor protein (1). The amino acids changed include a mobile residue, Asp148, which has been mutated to a glycine in the new construct, and Thr65 near the chromophore has been mutated to a serine, the wild-type residue at this location. I have solved the x-ray crystal structure of mCerulean3 at low pH and find that the pH-dependent isomerization has been eliminated. The chromophore is in the trans-conformation previously observed in Cerulean at pH 8. The mutations that increase the quantum yield and improve fluorescence brightness result in a stable, bright donor fluorophore well-suited for use in quantitative microscopic imaging.
ContributorsWatkins, Jennifer L (Author) / Wachter, Rebekka M. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012
189349-Thumbnail Image.png
Description
Surface modification of (semi)conducting materials with polymers provides a strategy for interfacing electrodes with electrocatalysts for reactions of industrial importance. The resulting constructs create opportunities to capture, convert and store solar energy in the form of chemical bonds, generating solar fuels. This thesis describes III-V semiconductors, modified with molecular catalysts

Surface modification of (semi)conducting materials with polymers provides a strategy for interfacing electrodes with electrocatalysts for reactions of industrial importance. The resulting constructs create opportunities to capture, convert and store solar energy in the form of chemical bonds, generating solar fuels. This thesis describes III-V semiconductors, modified with molecular catalysts embedded in thin-film polymeric coatings. Overarching goals of this work include building protein-like, soft-material environments on solid-state electrode surfaces. This approach enables coordination of earth-abundant metal centers within the three-dimensional molecular coatings to modulate the electronic and catalytic properties of the overall assembly and provide assemblies for studying the effects of polymeric-encapsulation on electrocatalytic as well as photoelectrosynthetic performance. In summary, this work provides 1) new approaches to designing, interfacing, and characterizing (semi)conducting and catalytic materials to effectively power chemical transformations (including hydrogen evolution and carbon dioxide reduction), and 2) kinetic models for better understanding the structure-function relationships governing the performance of these assemblies.
ContributorsNguyen, Nghi Do Phuong (Author) / Moore, Gary F. (Thesis advisor) / Seo, Dong-Kyun (Committee member) / Sayres, Scott G. (Committee member) / Arizona State University (Publisher)
Created2023
192990-Thumbnail Image.png
Description
Late first row transitional metals have attracted attention for the development of sustainable catalysts due to their low cost and natural abundance. This dissertation discusses the utilization of redox-active ligands to overcome one electron redox processes exhibited by these base metals. Previous advances in carbonyl and carboxylate hydrosilylation using redox

Late first row transitional metals have attracted attention for the development of sustainable catalysts due to their low cost and natural abundance. This dissertation discusses the utilization of redox-active ligands to overcome one electron redox processes exhibited by these base metals. Previous advances in carbonyl and carboxylate hydrosilylation using redox active ligand-supported complexes such as (Ph2PPrPDI)Mn and (Ph2PPrDI)Ni have been reviewed in this thesis to set the stage for the experimental work described herein.The synthesis and electronic structure of late first row transition metal complexes featuring the Ph2PPrPDI chelate was pursued. Utilizing these complexes as catalysts for a variety of reactions gave a recurring trend in catalytic activity. DFT calculations suggest that the trend in activity observed for these complexes is associated with the ease of phosphine arm dissociation. Furthermore, the synthesis and characterization of a phosphine-substituted aryl diimine ligand, Ph2PPrADI-H was explored. Addition of Ph2PPrADI-H to CoCl2 resulted in C-H activation of the ligand backbone and formation of [(Ph2PPrADI)CoCl][Co2Cl6]0.5. Reduction of [(Ph2PPrADI)CoCl][Co2Cl6]0.5 afforded the precatalyst, (Ph2PPrADI)Co, that was found to effectively catalyze carbonyl hydrosilylation. At low catalyst loading, TOFs of up to 330 s-1 could be achieved, the highest ever reported for metal-catalyzed carbonyl hydrosilylation. This dissertation also reports the first cobalt catalyzed pathway for dehydrocoupling diamines or polyamines with polymethylhydrosiloxanes to form crosslinked copolymers. At low catalyst loading, (Ph2PPrADI)Co was found to catalyze the dehydrocoupling of 1,3-diaminopropane and TMS-terminated PMHS with TOFs of up to 157 s-1, the highest TOF ever reported for a Si-N dehydrocoupling reaction. Dehydrocoupling of diamines with hydride-terminated polydimethylsiloxane yielded linear diamine siloxane copolymers as oils. Finally, dehydrocoupling between diamines and organosilanes catalyzed by a manganese dimer complex, [(2,6-iPr2PhBDI)Mn(μ-H)]2, has allowed for the preparation of silane diamine copolymers. Exceptional solvent absorption capacity was demonstrated by the solid networks, which were found to absorb up to 7 times their own weight. Furthermore, degradation of these networks revealed that their Si-N backbones are easily hydrolysable when exposed to air. The use of lightly crosslinked copolymers as coatings was also studied using SEM analysis.
ContributorsSharma, Anuja (Author) / Trovitch, Ryan J. (Thesis advisor) / Seo, Dong-Kyun (Committee member) / Moore, Gary F. (Committee member) / Arizona State University (Publisher)
Created2024
157318-Thumbnail Image.png
Description
Metalloporphyrins represent a class of molecular electrocatalysts for driving energy relevant half-reactions, including hydrogen evolution and carbon dioxide reduction. As electrocatalysts, they provide a strategy, and potential structural component, for linking renewable energy sources with the production of fuels and other value-added chemicals. In this work, porphyrins are used as

Metalloporphyrins represent a class of molecular electrocatalysts for driving energy relevant half-reactions, including hydrogen evolution and carbon dioxide reduction. As electrocatalysts, they provide a strategy, and potential structural component, for linking renewable energy sources with the production of fuels and other value-added chemicals. In this work, porphyrins are used as structural motifs for exploring structure-function relationships in electrocatalysis and as molecular building blocks for assembling photoelectrochemical assemblies leveraging the light capture and conversion properties of a gallium phosphide (GaP) semiconductor. These concepts are further covered in Chapter 1. A direct one-step method to chemically graft metalloporphyrins to GaP surfaces is described in Chapter 2. Structural characterization of the hybrid assemblies is achieved using surface-sensitive spectroscopic methods, and functional performance for photoinduced hydrogen production is demonstrated via three-electrode electrochemical measurement combined with product analysis using gas chromatography. In Chapter 3, preparation of a novel cobalt porphyrin modified with 3-fluorophenyl groups at all four meso-positions of the porphyrin ring and a single 4-vinylphenyl surface attachment group at one of the β-positions is described. Electrochemical measurements show the 3-fluorophenyl groups perturb the reduction potentials of the complex to more positive values as compared to non-fluorinated analogs, illustrating synthetic control over the redox properties of the catalysts. The use of grazing angle attenuated total reflectance Fourier transform infrared spectroscopy to characterize chemically modified GaP surfaces containing grafted cobalt fluoro-porphyrins is presented in Chapter 4. In these hybrid constructs, porphyrin surface attachment is achieved using either a two-step method involving coordination of cobalt fluoro-porphyrin metal centers to nitrogen sites on an initially applied thin-film polypyridyl surface coating, or via a direct modification strategy using a cobalt fluoro-porphyrin precursor bearing a covalently bonded 4- vinylphenyl surface attachment group. Finally, Chapter 5 describes binuclear copper porphyrins in which two copper porphyrin macrocycles are doubly fused at the meso-β positions are shown to be active electrocatalysts for the hydrogen evolution reaction. The enhancement in catalytic performance over analogous non-fused copper porphyrins indicates extended macrocycles provide an advantageous structural motif and design element for preparing electrocatalysts that activate small molecules of consequence to renewable energy.
ContributorsKhusnutdinova, Diana (Author) / Moore, Gary F. (Thesis advisor) / Moore, Ana L. (Committee member) / Petuskey, William T. (Committee member) / Arizona State University (Publisher)
Created2019
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
156914-Thumbnail Image.png
Description
The molecular modification of semiconductors has applications in energy

conversion and storage, including artificial photosynthesis. In nature, the active sites of

enzymes are typically earth-abundant metal centers and the protein provides a unique

three-dimensional environment for effecting catalytic transformations. Inspired by this

biological architecture, a synthetic methodology using surface-grafted polymers with

discrete chemical recognition sites

The molecular modification of semiconductors has applications in energy

conversion and storage, including artificial photosynthesis. In nature, the active sites of

enzymes are typically earth-abundant metal centers and the protein provides a unique

three-dimensional environment for effecting catalytic transformations. Inspired by this

biological architecture, a synthetic methodology using surface-grafted polymers with

discrete chemical recognition sites for assembling human-engineered catalysts in three-dimensional

environments is presented. The use of polymeric coatings to interface cobalt-containing

catalysts with semiconductors for solar fuel production is introduced in

Chapter 1. The following three chapters demonstrate the versatility of this modular

approach to interface cobalt-containing catalysts with semiconductors for solar fuel

production. The catalyst-containing coatings are characterized through a suite of

spectroscopic techniques, including ellipsometry, grazing angle attenuated total reflection

Fourier transform infrared spectroscopy (GATR-FTIR) and x-ray photoelectron (XP)

spectroscopy. It is demonstrated that the polymeric interface can be varied to control the

surface chemistry and photoelectrochemical response of gallium phosphide (GaP) (100)

electrodes by using thin-film coatings comprising surface-immobilized pyridyl or

imidazole ligands to coordinate cobaloximes, known catalysts for hydrogen evolution.

The polymer grafting chemistry and subsequent cobaloxime attachment is applicable to

both the (111)A and (111)B crystal face of the gallium phosphide (GaP) semiconductor,

providing insights into the surface connectivity of the hard/soft matter interface and

demonstrating the applicability of the UV-induced immobilization of vinyl monomers to

a range of GaP crystal indices. Finally, thin-film polypyridine surface coatings provide a

molecular interface to assemble cobalt porphyrin catalysts for hydrogen evolution onto

GaP. In all constructs, photoelectrochemical measurements confirm the hybrid

photocathode uses solar energy to power reductive fuel-forming transformations in

aqueous solutions without the use of organic acids, sacrificial chemical reductants, or

electrochemical forward biasing.
ContributorsBeiler, Anna Mary (Author) / Moore, Gary F. (Thesis advisor) / Moore, Thomas A. (Thesis advisor) / Redding, Kevin E. (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2018