Matching Items (3)
Filtering by

Clear all filters

136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137123-Thumbnail Image.png
Description
Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid coating on silk produced by the embiid Antipaluria urichi is shown using scanning and transmission electron microscopy, FT-IR, and water drop contact angle analysis. Subsequently, the composition of the lipid layer is then characterized by 1H NMR and GC-MS.
ContributorsOsborn Popp, Thomas Michael (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
136074-Thumbnail Image.png
Description
For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent

For many pre-health and graduate programs, organic chemistry is often the most difficult prerequisite course that students will take. To alleviate this difficulty, an intelligent tutoring system was developed to provide valuable feedback to practice problems within organic chemistry. This paper focuses on the design and use of an intelligent input parser for nomenclature questions within this system. Students in Dr. Gould's Fall 2014 organic chemistry class used this system and their data was collected to analyze the effectiveness of the input parser. Overall the students' feedback was optimistic and there was a positive relationship between test scores and student use of the system.
ContributorsHusarcik, Edward Andrew (Author) / Gould, Ian (Thesis director) / VanLehn, Kurt (Committee member) / Beerman, Eric (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05