Matching Items (22)
Filtering by

Clear all filters

152159-Thumbnail Image.png
Description
[FeFe]-hydrogenases are enzymes for the reduction of protons to hydrogen. They rely on only the earth abundant first-row transition metal iron at their active site (H cluster). In recent years, a multitude of diiron mimics of hydrogenases have been synthesized, but none of them catalyzes hydrogen production with the same

[FeFe]-hydrogenases are enzymes for the reduction of protons to hydrogen. They rely on only the earth abundant first-row transition metal iron at their active site (H cluster). In recent years, a multitude of diiron mimics of hydrogenases have been synthesized, but none of them catalyzes hydrogen production with the same exquisite combination of high turnover frequency and low activation energy as the enzymes. Generally, model complexes fail to include one or both of two features essential to the natural enzyme: an intricate array of outer coordination sphere contacts that constrain the coordination geometry to attain a catalytically optimal conformation, and the redox non-innocence of accessory [FeS] clusters found at or near the hydrogen-activating site. The work presented herein describes the synthesis and electrocatalytic characterization of iron-dithiolate models designed to incorporate these features. First, synthetic strategies are developed for constructing peptides with artificial metal-binding motifs, such as 1,3-dithiolate and phosphines, which are utilized to append diiron-polycarbonyl clusters onto a peptide. The phosphine-functionalized peptides are shown to be better electrocatalysts for proton reduction in water/acetonitrile mixtures than in neat acetonitrile. Second, we report the impact of redox non-innocent ligands on the electrocatalytic properties of two types of [FeFe]-hydrogenase models: dinuclear and mononuclear iron complexes. The bidentate, redox non-innocent α-diimine ligands (N-N), 2,2'-bipyridine and 2,2' bipyrimidine, are used to create complexes with the general formula (μ-SRS)Fe2(CO)4(N-N), new members of the well known family of asymmetric diiron carbonyls. While the 2,2'-bipyridine derivatives can act as electrocatalysts for proton reduction, surprisingly, the 2,2'-bipyrimidine analogues are found to be inactive towards catalysis. Electrochemical investigation of two related Fe(II) complexes, (bdt)Fe(CO)P2 for bdt = benzene-1,2-dithiolate and P2 = 1,1'-diphenylphosphinoferrocene or methyl-2-{bis(diphenylphosphinomethylamino}acetate, related to the distal iron in [FeFe]-hydrogenase show that these complexes catalyze the reduction of protons under mild conditions. However, their reactivities toward the external ligand CO are distinguished by gross geometrical differences.
ContributorsRoy, Souvik (Author) / Jones, Anne K (Thesis advisor) / Moore, Thomas (Committee member) / Trovitch, Ryan (Committee member) / Arizona State University (Publisher)
Created2013
152384-Thumbnail Image.png
Description
Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general.

Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general. In this work, thionation of GOs has been achieved in high yield through two new methods that also allow concomitant chemical reduction/thermal reduction of GOs; a solid-gas metathetical reaction method with boron sulfides (BxSy) gases and a solvothermal reaction method employing phosphorus decasulfide (P4S10). The thionation products, called "mercapto reduced graphene oxides (m-RGOs)", were characterized by employing X-ray photoelectron spectroscopy, powder X-ray diffraction, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, electron probe analysis, scanning electron microscopy, (scanning) transmission electron microscopy, nano secondary ion mass spectrometry, Ellman assay and atomic force microscopy. The excellent dispersibility of m-RGOs in various solvents including alcohols has allowed fabrication of thin films of m-RGOs. Deposition of m-RGOs on gold substrates was achieved through solution deposition and the m-RGOs were homogeneously distributed on gold surface shown by atomic force microscopy. Langmuir-Blodgett (LB) films of m-RGOs were obtained by transferring their Langmuir films, formed by simple drop casting of m-RGOs dispersion on water surface, onto various substrates including gold, glass and indium tin oxide. The m-RGO LB films showed low sheet resistances down to about 500 kΩ/sq at 92% optical transparency. The successful results make m-RGOs promising for applications in transparent conductive coatings, biosensing, etc.
ContributorsJeon, Kiwan (Author) / Seo, Dong-Kyun (Thesis advisor) / Jones, Anne K (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2013
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152823-Thumbnail Image.png
Description
Natural hydrogenases catalyze the reduction of protons to molecular hydrogen reversibly under mild conditions; these enzymes have an unusual active site architecture, in which a diiron site is connected to a cubane type [4Fe-4S] cluster. Due to the relevance of this reaction to energy production, and in particular to sustainable

Natural hydrogenases catalyze the reduction of protons to molecular hydrogen reversibly under mild conditions; these enzymes have an unusual active site architecture, in which a diiron site is connected to a cubane type [4Fe-4S] cluster. Due to the relevance of this reaction to energy production, and in particular to sustainable fuel production, there have been substantial amount of research focused on developing biomimetic organometallic models. However, most of these organometallic complexes cannot revisit the structural and functional fine-tuning provided by the protein matrix as seen in the natural enzyme. The goal of this thesis is to build a protein based functional mimic of [Fe-Fe] hydrogenases. I used a 'retrosynthetic' approach that separates out two functional aspects of the natural enzyme. First, I built an artificial electron transfer domain by engineering two [4Fe-4S] cluster binding sites into an existing protein, DSD, which is a de novo designed domain swapped dimer. The resulting protein, DSD-bis[4Fe-4S], contains two clusters at a distance of 36 Å . I then varied distance between two clusters using vertical translation along the axis of the coiled coil; the resulting protein demonstrates efficient electron transfer to/from redox sites. Second, I built simple, functional artificial hydrogenases by using an artificial amino acid comprising a 1,3 dithiol moiety to anchor a biomimetic [Fe-Fe] active site within the protein scaffold Correct incorporation of the cluster into a model helical peptide was verified by UV-Vis, FTIR, ESI-MS and CD spectroscopy. This synthetic strategy is extended to the de novo design of more complex protein architectures, four-helix bundles that host the di-iron cluster within the hydrophobic core. In a separate approach, I developed a generalizable strategy to introduce organometallic catalytic sites into a protein scaffold. I introduced a biomimetic organometallic complex for proton reduction by covalent conjugation to biotin. The streptavidin-bound complex is significantly more efficient in photocatalytic hydrogen production than the catalyst alone. With these artificial proteins, it will be possible to explore the effect of second sphere interactions on the activity of the diiron center, and to include in the design properties such as compatibility with conductive materials and electrodes.
ContributorsRoy, Anindya (Author) / Ghirlanda, Giovanna (Thesis advisor) / Yan, Hao (Committee member) / Gust, Devens (Committee member) / Arizona State University (Publisher)
Created2014
153337-Thumbnail Image.png
Description
Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry,

Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry, cell biology and material science. Functionalizing the AFM tip made it possible to detect molecules and their interaction using recognition imaging at single molecule level. Also the unbinding force of two molecules can be investigated based on AFM based single molecule force spectroscopy.

In the first study, a new chemical approach to functionalize the AFM tip in a simple and user-friendly way has been described. Copper-free click chemistry and a vinyl sulfone PEG linker have been utilized during the process. Using this technique, human thrombin and integrin were detected in separate experiments. Then a novel tri-arm linker with two recognition molecules on it was designed and two proteins (human thrombin and integrin) were detected simultaneously in the same experiment using recognition imaging. This technique can be applied to understand many multivalent interactions taking place in nature. Using the same tri-arm linker functionalized with two biotin molecules, the interaction of streptavidin with mono-biotin and bis-biotin ligands were investigated. The thermal stability of streptavidin-biotin complex was also studied using SDS-PAGE analysis.

In the final study, structure of native chromatin extracted from normal and cancer cell lines were analyzed using AFM imaging and agarose gel electrophoresis. Different salt fractions were used to extract chromatin region depending on their solubility. Mnase sensitivity of the chromatin sample was used to understand the open and closed structures of chromatin from different sources. The amount of chromatin in different salt fractions could act as an indicator of amount of open and condensed chromatin in normal and cancer cells. Eventually this ratio of closed and open structure of chromatin could be an indicator of tumorigenic nature of particular cell lines.
ContributorsSenapati, Subhadip (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015
152988-Thumbnail Image.png
Description
A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere

A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere with about 20 TW of the total product used by humans. Additionally, our society uses approximately 20 more TW of energy from ancient photosynthetic products i.e. fossil fuels. In order to mitigate climate problems, the carbon dioxide must be removed from the human energy usage by replacement or recycling as an energy carrier. Proposals have been made to process biomass into biofuels; this work demonstrates that current efficiencies of natural photosynthesis are inadequate for this purpose, the effects of fossil fuel replacement with biofuels is ecologically irresponsible, and new technologies are required to operate at sufficient efficiencies to utilize artificial solar-to-fuels systems. Herein a hybrid bioderived self-assembling hydrogen-evolving nanoparticle consisting of photosystem I (PSI) and platinum nanoclusters is demonstrated to operate with an overall efficiency of 6%, which exceeds that of land plants by more than an order of magnitude. The system was limited by the rate of electron donation to photooxidized PSI. Further work investigated the interactions of natural donor acceptor pairs of cytochrome c6 and PSI for the thermophilic cyanobacteria Thermosynechococcus elogantus BP1 and the red alga Galderia sulphuraria. The cyanobacterial system is typified by collisional control while the algal system demonstrates a population of prebound PSI-cytochrome c6 complexes with faster electron transfer rates. Combining the stability of cyanobacterial PSI and kinetics of the algal PSI:cytochrome would result in more efficient solar-to-fuel conversion. A second priority is the replacement of platinum with chemically abundant catalysts. In this work, protein scaffolds are employed using host-guest strategies to increase the stability of proton reduction catalysts and enhance the turnover number without the oxygen sensitivity of hydrogenases. Finally, design of unnatural electron transfer proteins are explored and may introduce a bioorthogonal method of introducing alternative electron transfer pathways in vitro or in vivo in the case of engineered photosynthetic organisms.
ContributorsVaughn, Michael David (Author) / Moore, Thomas (Thesis advisor) / Fromme, Petra (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153102-Thumbnail Image.png
Description
Redox reactions are crucial to energy transduction in biology. Protein film electrochemistry (PFE) is a technique for studying redox proteins in which the protein is immobilized at an electrode surface so as to allow direct exchange of electrons. Establishing a direct electronic connection eliminates the need for redox­active mediators, thus

Redox reactions are crucial to energy transduction in biology. Protein film electrochemistry (PFE) is a technique for studying redox proteins in which the protein is immobilized at an electrode surface so as to allow direct exchange of electrons. Establishing a direct electronic connection eliminates the need for redox­active mediators, thus allowing for interrogation of the redox protein of interest. PFE has proven a versatile tool that has been used to elucidate the properties of many technologically relevant redox proteins including hydrogenases, laccases, and glucose oxidase.

This dissertation is comprised of two parts: extension of PFE to a novel electrode material and application of PFE to the investigation of a new type of hydrogenase. In the first part, mesoporous antimony-doped tin oxide (ATO) is employed for the first time as an electrode material for protein film electrochemistry. Taking advantage of the excellent optical transparency of ATO, spectroelectrochemistry of cytochrome c is demonstrated. The electrochemical and spectroscopic properties of the protein are analogous to those measured for the native protein in solution, and the immobilized protein is stable for weeks at high loadings. In the second part, PFE is used to characterize the catalytic properties of the soluble hydrogenase I from Pyrococcus furiosus (PfSHI). Since this protein is highly thermostable, the temperature dependence of catalytic properties was investigated. I show that the preference of the enzyme for reduction of protons (as opposed to oxidation of hydrogen) and the reactions with oxygen are highly dependent on temperature, and the enzyme is tolerant to oxygen during both oxidative and reductive catalysis.
ContributorsKwan, Patrick Karchung (Author) / Jones, Anne K (Thesis advisor) / Francisco, Wilson (Committee member) / Moore, Thomas (Committee member) / Arizona State University (Publisher)
Created2014
153026-Thumbnail Image.png
Description
The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics

The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics of the assembly process of cotton Rca. We present FCS data for Rca in the presence of Mg*ATPgS and Mg*ADP and for the D173N Walker B motif mutant in the presence of Mg*ATP. Our data are consistent with promotion and stabilization of hexamers by Mg*ATPgS and Mg*ATP, whereas Mg*ADP facilitates continuous assembly. We find that in the presence of Mg·ADP, Rca self-associates in a step-wise fashion to form oligomeric and higher order forms, with a strong size dependence on subunit concentration. The monomer is the dominant species below 0.5 micromolar, whereas the hexamer appears to be most populated in the 10-30 micromolar range. Large assemblies containing on the order of 24 subunits become dominant above 40 micromolar, with continued assembly at even higher concentrations. Our data are consistent with a highly dynamic exchange of subunits among oligomeric species of diverse sizes. The most likely ADP-mediated assembly mechanism seems to involve the formation of spiral supra-molecular structures that grow along the helical axis by the step-wise addition of dimeric units. To examine the effect of Mg·ATP on oligomerization, we have generated the D173N mutant of Rca, which binds but does not hydrolyze ATP. In range of 8 and 70 micromolar, 60-80% of Rca is predicted to form hexamers in the presence of Mg*ATP compared to just 30-40% with Mg*ADP. We see a clear trend at which hexamerization occurs at high ATP:ADP ratios and in addition, at increasing concentrations of free magnesium ions to 5 milimolar that results in formation of six subunits. We present an assembly model where Mg*ATP promotes and stabilizes hexamerization at low micromolar Rca concentrations relative to Mg*ADP, and suggest that this results from closed ring hexamer formation in Mg*ATP and open hexameric spiral formation in Mg*ADP .
ContributorsKuriata, Agnieszka (Author) / Wachter, Rebekka (Thesis advisor) / Redding, Kevin (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
150268-Thumbnail Image.png
Description
A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors

A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors of DNA and RNA. Threose nucleic acid (TNA) is capable of forming stable helical structures with complementary strands of itself and RNA. This provides a plausible mechanism for genetic information transfer between TNA and RNA. Therefore TNA has been proposed as a potential RNA progenitor. Using molecular evolution, functional sequences were isolated from a pool of random TNA molecules. This implicates a possible chemical framework capable of crosstalk between TNA and RNA. Further, this shows that heredity and evolution are not limited to the natural genetic system based on ribofuranosyl nucleic acids. Another alternative genetic system, glycerol nucleic acid (GNA) undergoes intrasystem pairing with superior thermalstability compared to that of DNA. Inspired by this property, I demonstrated a minimal nanostructure composed of both left- and right-handed mirro image GNA. This work suggested that GNA could be useful as promising orthogonal material in structural DNA nanotechnology.
ContributorsZhang, Su (Author) / Chaut, John C (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
150978-Thumbnail Image.png
Description
Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and

Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and catalyze hydrogen oxidation in vivo. In contrast, the group 3 [NiFe]-hydrogenases are heteromultimeric, bifunctional enzymes that fulfill various cellular roles. In this dissertation, protein film electrochemistry (PFE) is used to characterize the catalytic properties of two group 3 [NiFe]-hydrogenases: HoxEFUYH from Synechocystsis sp. PCC 6803 and SHI from Pyrococcus furiosus. First, HoxEFUYH is shown to be biased towards hydrogen production. Upon exposure to oxygen, HoxEFUYH inactivates to two states, both of which can be reactivated on the timescale of seconds. Second, we show that PfSHI is the first example of an oxygen tolerant [NiFe]-hydrogenase that produces two inactive states upon exposure to oxygen. Both inactive states are analogous to those characterized for HoxEFUYH, but oxygen exposed PfSHI produces a greater fraction that reactivates at high potentials, enabling hydrogen oxidation in the presence of oxygen. Third, it is shown that removing the NAD(P)-reducing subunits from PfSHI leads to a decrease in bias towards hydrogen oxidation and renders the enzyme oxygen sensitive. Both traits are likely due to impaired intramolecular electron transfer. Mechanistic hypotheseses for these functional differences are considered.
ContributorsMcIntosh, Chelsea Lee (Author) / Jones, Anne K (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2012