Matching Items (6)
Filtering by

Clear all filters

152626-Thumbnail Image.png
Description
The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular

The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular polymeric substances (EPS). The goal of my dissertation was to quantify the impacts of extreme weather events on DOM in surface water and downstream treatment processes, and to improve membrane filtration efficiency and CECs oxidation efficiency during water reclamation with ozone. Surface water quality, air quality and hydrologic flow rate data were used to quantify changes in DOM and turbidity following dust storms, flooding, or runoff from wildfire burn areas in central Arizona. The subsequent impacts to treatment processes and public perception of water quality were also discussed. Findings showed a correlation between dust storm events and change in surface water turbidity (R2=0.6), attenuation of increased DOM through reservoir systems, a 30-40% increase in organic carbon and a 120-600% increase in turbidity following severe flooding, and differing impacts of upland and lowland wildfires. The use of ozone to reduce membrane fouling caused by vesicles (a subcomponent of EPS) and oxidize CECs through increased hydroxyl radical (HO●) production was investigated. An "ozone dose threshold" was observed above which addition of hydrogen peroxide increased HO● production; indicating the presence of ambient promoters in wastewater. Ozonation of CECs in secondary effluent over titanium dioxide or activated carbon did not increase radial production. Vesicles fouled ultrafiltration membranes faster (20 times greater flux decline) than polysaccharides, fatty acids, or NOM. Based upon the estimated carbon distribution of secondary effluent, vesicles could be responsible for 20-60% of fouling during ultrafiltration and may play a vital role in other environmental processes as well. Ozone reduced vesicle-caused membrane fouling that, in conjunction with the presence of ambient promoters, helps to explain why low ozone dosages improve membrane flux during full-scale water reclamation.
ContributorsBarry, Michelle (Author) / Barry, Michelle C (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2014
153253-Thumbnail Image.png
Description
Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on the experimental data.

Swimming pool water (collected in June 2014 in Phoenix) and model contaminants (Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Compounds (EDCs), artificial sweeteners, and artificial human waste products) were chlorinated in controlled laboratory experiments. The CHCl3 production during chlorination was determined using Gas Chromatography-Mass Spectrometry (GC-MS) following solid-phase microextraction (SPME). Upon chlorination, all swimming pool water samples and contaminants produced measureable amounts of chloroform. Chlorination of swimming pool water produced 0.005-0.134 mol CHCl3/mol C and 0.004-0.062 mol CHCl3/mol Cl2 consumed. Chlorination of model contaminants produced 0.004-0.323 mol CHCl3/mol C and 0.001-0.247 mol CHCl3/mol Cl2 consumed. These numbers are comparable and indicate that the model contaminants react similarly to swimming pool water during chlorination. The CHCl3 flux from swimming pools in Phoenix was estimated at approximately 3.9-4.3 Gg/yr and was found to be largely dependent on water temperature and wind speed while air temperature had little effect. This preliminary estimate is orders of magnitude larger than previous estimates of anthropogenic emissions in Phoenix suggesting that swimming pools might be a significant source of atmospheric CHCl3 locally.
ContributorsRose, Christy J (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2014
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
156634-Thumbnail Image.png
Description
Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure

Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure an effective integrated bioremediation + ozonation remedial strategy to remove the overall organic carbon. Using a soil column, I conducted batch ozonation experiments for different soils and at different moisture levels. I measured multiple parameters: e.g., total petroleum hydrocarbons (TPH) and dissolved organic carbon (DOC), to build a full understanding of the data that led to the solid conclusions. I first demonstrated the feasibility of using ozone to attack heavy petroleum hydrocarbons in soil settings. I identified the physical and chemical hurdles (e.g., moisture, mass transfer, pH) needed to be overcome to make the integration of chemical oxidation and biodegradation more efficient and defines the mechanisms behind the experimental observations. Next, I completed a total carbon balance, which revealed that multiple components, including soil organic matter (SOM) and non-TPH petroleum, competed for ozone, although TPH was relatively more reactive. Further experiments showed that poor soil mixing and high soil-moisture content hindered mass transfer of ozone to react with the TPH. Finally, I pursued the theme of optimizing the integration of ozonation and biodegradation through a multi-stage strategy. I conducted multi-stages of ozonation and bioremediation for two benchmark soils with distinctly different oils to test if and how much ozonation enhanced biodegradation and vice versa. With pH and moisture optimized for each step, pre-ozonation versus post-ozonation was assessed for TPH removal and mineralization. Multi-cycle treatment was able to achieve the TPH regulatory standard when biodegradation alone could not. Ozonation did not directly enhance the biodegradation rate of TPH; instead, ozone converted TPH into DOC that was biodegraded and mineralized. The major take-home lesson from my studies is that multi-stage ozonation + biodegradation is a useful remediation tool for petroleum contamination in soil.
ContributorsChen, Tengfei (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Delgado, Anca G (Committee member) / Arizona State University (Publisher)
Created2018
171571-Thumbnail Image.png
Description
N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its

N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its carcinogenic nature, it is important to understand the mechanism of formation of NDMA in both engineered processes such as water treatment and in natural processes in fogs and clouds. NDMA might form through the reaction of chloramines with amines in both cases. This work analyzes polydiallyldimethyl ammonium chloride (PolyDADMAC), which is the most commonly used polymer at drinking water treatment plants and has the potential to form NDMA if free polymer is present during the chloramination (disinfection) process. The composition of industrial polyDADMAC solutions is not well understood and is difficult to analyze. This work uses 1H and 13C nuclear magnetic resonance (NMR) to analyze the polymer solution composition. Both 1H and 13C NMR allow investigation of the presence of trace impurities in the solution, gather structural information such as chain length, and inform on reaction mechanisms. The primary impurities of concern for NDMA formation were identified as dimethylamine (DMA) and short-chain oligomers of the polyDADMAC. 13C NMR was further used to confirm that NDMA likely forms from polyDADMAC via a Hofmann elimination. Chloramines might also form in fogs and clouds although to date the potential for chloramines to form NDMA in atmospheric fog and cloud droplets has not been investigated. This work uses computational modeling to determine that at reported atmospheric conditions, the chloramine pathway contributes to less than 0.01% NDMA formation. The numerical modeling identified a need for more atmospheric HOCl measurements. This work proposes a concept of using HOCl to react to form chloramine, which can react to form NDMA as a way to quantify atmospheric HOCl.
ContributorsDonovan, Samantha Jo (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2022
171901-Thumbnail Image.png
Description
The world currently faces hundreds of millions of cubic meters of soil contaminated with petroleum crude oil residuals. The application of ozone gas (O3) to contaminated soil is an effective means to oxidize petrogenic compounds and, when used with bioremediation, remove the oxidized byproducts. The overarching goal of this dissertation

The world currently faces hundreds of millions of cubic meters of soil contaminated with petroleum crude oil residuals. The application of ozone gas (O3) to contaminated soil is an effective means to oxidize petrogenic compounds and, when used with bioremediation, remove the oxidized byproducts. The overarching goal of this dissertation was to evaluate two areas of potential concern to large-scale O3 deployment: the capacity of O3-treated petroleum contaminated soils to support seed germination before bioremediation and the transport characteristics of O3 in soil columns. A matched study comparing the germination outcomes of radish (Raphanus sativus L.), grass (Lagurus ovatus), and lettuce (Lactuca sativa) in soils contaminated with three crude oils at various O3 total-dose levels showed that radish germination was sensitive to the soluble byproducts of oxidized petroleum (assayed as dissolved organic carbon [DOC]), but not sensitive to the unreacted petroleum (total petroleum hydrocarbon [TPH]). A multivariable logistic regression model based on the radish results showed that adverse germination outcomes varied with the DOC concentration and that DOC ecotoxicity decreased with increasing O3 dose-level and background organic material. The model was used to create a risk management map of conditions that created 10%, 25%, and 50% extra risks of adverse radish germination. Thus, while O3 effectively lowered TPH in soils, the byproducts exhibited ecotoxicity that inhibited radish germination. On the other hand, the sensitivity of radish germination to oxidized petroleum byproducts could be utilized to assess ecological risk. The feasibility of gas transport in the soil matrix is also of paramount concern to field-scale utilization of O3. A matched study comparing TPH removal at three field-relevant loading rates (4, 12, or 36 mgozone/ gsoil/ hr) and various total dose-levels showed an anisotropic pattern along the axial distance favoring the column inlet end. The asymmetry decreased as loading rate decreased and with concurrent improvements in O3-transport distance, O3 utilization, and heat balance. Overall, a low O3 loading rate significantly improved O3 transport and utilization efficiency, while also better distributing reaction-generated heat along the gas flow path for a depth typically utilized in bioremediation field settings.
ContributorsYavuz, Burcu Manolya (Author) / Rittmann, Bruce E (Thesis advisor) / Delgado, Anca G (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2022