Matching Items (7)
Filtering by

Clear all filters

151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
153253-Thumbnail Image.png
Description
Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on the experimental data.

Swimming pool water (collected in June 2014 in Phoenix) and model contaminants (Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Compounds (EDCs), artificial sweeteners, and artificial human waste products) were chlorinated in controlled laboratory experiments. The CHCl3 production during chlorination was determined using Gas Chromatography-Mass Spectrometry (GC-MS) following solid-phase microextraction (SPME). Upon chlorination, all swimming pool water samples and contaminants produced measureable amounts of chloroform. Chlorination of swimming pool water produced 0.005-0.134 mol CHCl3/mol C and 0.004-0.062 mol CHCl3/mol Cl2 consumed. Chlorination of model contaminants produced 0.004-0.323 mol CHCl3/mol C and 0.001-0.247 mol CHCl3/mol Cl2 consumed. These numbers are comparable and indicate that the model contaminants react similarly to swimming pool water during chlorination. The CHCl3 flux from swimming pools in Phoenix was estimated at approximately 3.9-4.3 Gg/yr and was found to be largely dependent on water temperature and wind speed while air temperature had little effect. This preliminary estimate is orders of magnitude larger than previous estimates of anthropogenic emissions in Phoenix suggesting that swimming pools might be a significant source of atmospheric CHCl3 locally.
ContributorsRose, Christy J (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2014
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
156705-Thumbnail Image.png
Description
Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential

Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential health concerns in case of exposure to popular FRs. Carbonaceous nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene oxide (GO) have been studied and applied to polymer composites and electronics extensively due to their remarkable properties. Hence CNMs are considered as potential alternative materials that present high flame retardancy. In this research, different kinds of CNMs coatings on polyester fabric are produced and evaluated for their use as flame retardants. To monitor the mass loading of CNMs coated on the fabric, a two-step analytical method for quantifying CNMs embedded in polymer composites was developed. This method consisted of polymer dissolution process using organic solvents followed by subsequent programmed thermal analysis (PTA). This quantification technique was applicable to CNTs with and without high metal impurities in a broad range of polymers. Various types of CNMs were coated on polyester fabric and the efficacy of coatings as flame retardant was evaluated. The oxygen content of CNMs emerged as a critical parameter impacting flame retardancy with higher oxygen content resulting in less FR efficacy. The most performant nanomaterials, multi-walled carbon nanotubes (MWCNTs) and amine functionalized multi-walled carbon nantoubes (NH2-MWCNT) showed similar FR properties to current flame retardants with low mass loading (0.18 g/m2) and hence are promising alternatives that warrant further investigation. Chemical/physical modification of MWCNTs was conducted to produce well-dispersed MWCNT solutions without involving oxygen for uniform FR coating. The MWCNTs coating was studied to evaluate the durability of the coating and the impact on the efficacy during use phase by conducting mechanical abrasion and washing test. Approximately 50% and 40% of MWCNTs were released from 1 set of mechanical abrasion and washing test respectively. The losses during simulated usage impacted the flame retardancy negatively.
ContributorsNosaka, Takayuki (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2018
187724-Thumbnail Image.png
Description
Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode

Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode surface/ volume treated ratios. By making electrodes flexible, more compact designs that maximize electrode surface per volume treated might become a reality. This dissertation encompasses the successful fabrication of flexible nanocomposite electrodes for electrocatalysis and electroanalysis applications.First, nano boron-doped diamond electrodes (BDD) were prepared as an inexpensive alternative to commercial boron-doped diamond electrodes. Comparative detailed surface and electrochemical characterization was conducted. Empirical study showed that replacing commercial BDD electrodes with nano-BDD electrodes can result in a cost reduction of roughly 1000x while maintaining the same electrochemical performance. Next, self-standing electrodes were fabricated through the electropolymerization of conducing polymer, polypyrrole. Surface characterizations, such as SEM, FTIR and XPS proved the successful fabrication of these self-standing electrodes. High mechanical stability and bending flexibility demonstrated the ability to use these electrodes in different designs, such as roll-to-roll membranes. Electrochemical nitrite reduction was employed to demonstrate the viability of using self-standing nanocomposite electrodes for electrocatalytic applications reducing hazardous nitrogen oxyanions (i.e., nitrite) towards innocuous species such as nitrogen gas. A high faradaic efficiency of 78% was achieved, with high selectivity of 91% towards nitrogen gas. To further enhance the conductivity and charge transfer properties of self-standing polypyrrole electrodes, three different nanoparticles, including copper (Cu), gold (Au), and platinum (Pt), were incorporated in the polypyrrole matrix. Effect of nanoparticle wt% and interaction between metal nanoparticles and polypyrrole matrix was investigated for electroanalytical applications, specifically dopamine sensing. Flexible nanocomposite electrodes showed outstanding performance as electrochemical sensors with PPy-Cu 120s exhibiting a low limit of detection (LOD) of 1.19 µM and PPy-Au 120s exhibiting a high linear range of 5 µM - 300 µM. This dissertation outlines a method of fabricating self-standing electrodes and provides a pathway of using self-standing electrodes based on polypyrrole and polypyrrole-metal nanocomposites for various applications in wastewater treatment and electroanalytical sensing.
ContributorsBansal, Rishabh (Author) / Garcia-Segura, Sergio (Thesis advisor) / Westerhoff, Paul (Committee member) / Perreault, Francois (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2023
171571-Thumbnail Image.png
Description
N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its

N-nitrosodimethylamine (NDMA) is a probable human carcinogen that has been detected in various environments including the atmosphere, clouds, surface waters, and drinking water. NDMA can form through natural reactions in the aqueous phase of the atmosphere and it can form as a disinfection byproduct in water treatment. Due to its carcinogenic nature, it is important to understand the mechanism of formation of NDMA in both engineered processes such as water treatment and in natural processes in fogs and clouds. NDMA might form through the reaction of chloramines with amines in both cases. This work analyzes polydiallyldimethyl ammonium chloride (PolyDADMAC), which is the most commonly used polymer at drinking water treatment plants and has the potential to form NDMA if free polymer is present during the chloramination (disinfection) process. The composition of industrial polyDADMAC solutions is not well understood and is difficult to analyze. This work uses 1H and 13C nuclear magnetic resonance (NMR) to analyze the polymer solution composition. Both 1H and 13C NMR allow investigation of the presence of trace impurities in the solution, gather structural information such as chain length, and inform on reaction mechanisms. The primary impurities of concern for NDMA formation were identified as dimethylamine (DMA) and short-chain oligomers of the polyDADMAC. 13C NMR was further used to confirm that NDMA likely forms from polyDADMAC via a Hofmann elimination. Chloramines might also form in fogs and clouds although to date the potential for chloramines to form NDMA in atmospheric fog and cloud droplets has not been investigated. This work uses computational modeling to determine that at reported atmospheric conditions, the chloramine pathway contributes to less than 0.01% NDMA formation. The numerical modeling identified a need for more atmospheric HOCl measurements. This work proposes a concept of using HOCl to react to form chloramine, which can react to form NDMA as a way to quantify atmospheric HOCl.
ContributorsDonovan, Samantha Jo (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2022
161962-Thumbnail Image.png
Description
Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing

Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing and a hydrophilic gel matrix for storage. The desorption process can be completed by elevating the temperature above the upper or lower critical solution temperature point to initiate the volume phase transition of either thermo-responsive or photothermal types. This thesis focuses on investigating the structural effect of hydrogels on moisture uptake. Firstly, the main matrix of gel desiccant, poly(N-isopropylacrylamide) hydrogel, was optimized via tuning synthesis temperature and initial monomer concentration. Secondly, a series of hydrogel-based desiccants consisting of a hygroscopic material, vinyl imidazole, and optimized poly(N-isopropylacrylamide) gel matrix were synthesized with different network structures. The moisture uptake result showed that the gel desiccant with an interpenetrating polymeric network (IPN) resulted in the best-performing moisture capturing. The gel desiccant with the best performance will be used as a primary structural unit to evaluate the feasibility of developing a light-responsive gel desiccant to materialize light-trigger moisture desorption for AWE technology in the future.
ContributorsZhao, Xingbang (Author) / Dai, Lenore (Thesis advisor) / Westerhoff, Paul (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021