Matching Items (719)
Filtering by

Clear all filters

150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
Description
Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements

Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements to improve microchannel design and characterize existing devices. Methods such as micro particle imaging velocimetry (microPIV) and micro particle tracking velocimetry (microPTV) are mature and established methods for characterization of steady 2D flow fields. Increasingly complex microdevices require techniques that measure unsteady and/or three dimensional velocity fields. This dissertation presents a method for three-dimensional velocimetry of unsteady microflows based on spinning disk confocal microscopy and depth scanning of a microvolume. High-speed 2D unsteady velocity fields are resolved by acquiring images of particle motion using a high-speed CMOS camera and confocal microscope. The confocal microscope spatially filters out of focus light using a rotating disk of pinholes placed in the imaging path, improving the ability of the system to resolve unsteady microPIV measurements by improving the image and correlation signal to noise ratio. For 3D3C measurements, a piezo-actuated objective positioner quickly scans the depth of the microvolume and collects 2D image slices, which are stacked into 3D images. Super resolution microPIV interrogates these 3D images using microPIV as a predictor field for tracking individual particles with microPTV. The 3D3C diagnostic is demonstrated by measuring a pressure driven flow in a three-dimensional expanding microchannel. The experimental velocimetry data acquired at 30 Hz with instantaneous spatial resolution of 4.5 by 4.5 by 4.5 microns agrees well with a computational model of the flow field. The technique allows for isosurface visualization of time resolved 3D3C particle motion and high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. Several applications are investigated, including 3D quantitative fluorescence imaging of isotachophoresis plugs advecting through a microchannel and the dynamics of reaction induced colloidal crystal deposition.
ContributorsKlein, Steven Adam (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Devasenathipathy, Shankar (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2011
150035-Thumbnail Image.png
Description
Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of

Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of critical load bearing structures can lead to an increase in time allowed for the evacuation of occupants, recovery of property, and access to the fire. Much work has been done in improving the structural performance of concrete including reducing column sizes and providing a safer structure. As a result, high-strength (HS) concrete has been developed to fulfill the needs of such improvements. HS concrete varies from normal-strength (NS) concrete in that it has a higher stiffness, lower permeability and larger durability. This, unfortunately, has resulted in poor performance under fire. The lower permeability allows for water vapor to build up causing HS concrete to suffer from explosive spalling under rapid heating. In addition, the coefficient of thermal expansion (CTE) of HS concrete is lower than that of NS concrete. In this study, the effects of introducing a region of crumb rubber concrete into a steel-reinforced concrete column were analyzed. The inclusion of crumb rubber concrete into a column will greatly increase the thermal resistivity of the overall column, leading to a reduction in core temperature as well as the rate at which the column is heated. Different cases were analyzed while varying the positioning of the crumb-rubber region to characterize the effect of position on the improvement of fire resistance. Computer simulated finite element analysis was used to calculate the temperature and strain distribution with time across the column's cross-sectional area with specific interest in the steel - concrete region. Of the several cases which were investigated, it was found that the improvement of time before failure ranged between 32 to 45 minutes.
ContributorsZiadeh, Bassam Mohammed (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2011
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
149676-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have

Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have enabled the engineering of synthetic analogues, bimetallic colloidal particles, that swim due to asymmetric ion flux originally proposed by Mitchell. Bimetallic colloidal particles swim through aqueous solutions by converting chemical fuel to fluid motion through asymmetric electrochemical reactions. This dissertation presents novel bimetallic motor fabrication strategies, motor functionality, and a study of the motor collective behavior in chemical concentration gradients. Brownian dynamics simulations and experiments show that the motors exhibit chemokinesis, a motile response to chemical gradients that results in net migration and concentration of particles. Chemokinesis is typically observed in living organisms and distinct from chemotaxis in that there is no particle directional sensing. The synthetic motor chemokinesis observed in this work is due to variation in the motor's velocity and effective diffusivity as a function of the fuel and salt concentration. Static concentration fields are generated in microfluidic devices fabricated with porous walls. The development of nanoscale particles that swim autonomously and collectively in chemical concentration gradients can be leveraged for a wide range of applications such as directed drug delivery, self-healing materials, and environmental remediation.
ContributorsWheat, Philip Matthew (Author) / Posner, Jonathan D (Thesis advisor) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Buttry, Daniel (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011
149733-Thumbnail Image.png
Description
Historians often characterize first ladies in the Progressive Era as representatives of the last vestiges of Victorian womanhood in an increasingly modern society. This dissertation argues that first ladies negotiated an image of themselves that fulfilled both traditional and modern notions of womanhood. In crafting these images, first ladies constructed

Historians often characterize first ladies in the Progressive Era as representatives of the last vestiges of Victorian womanhood in an increasingly modern society. This dissertation argues that first ladies negotiated an image of themselves that fulfilled both traditional and modern notions of womanhood. In crafting these images, first ladies constructed images of their celebrity selves that were uniquely modern. Thus, images of first ladies in the Progressive Era show them as modest and feminine but also autonomous, intelligent, and capable. Using the historian Charles Ponce de Leon's research on modern human-interest journalism, I contend that first ladies in the Progressive Era worked with the modern press in a symbiotic relationship. This relationship allowed the press exclusive access to what was, ostensibly, the first lady's private, and therefore authentic, self. By purporting to reveal parts of their private lives in the press, first ladies showed themselves as down-to-earth despite their success and fulfilled by their domestic pursuits despite their compelling public lives. By offering the press exclusive access to their lives, first ladies secured the opportunity to shape specific images of themselves to appeal, as broadly as possible, to their husbands and parties' constituents and the American public. First ladies in the Progressive Era thus acted as political figures by using both public and private, or what historian Catherine Allgor terms, "unofficial spaces" to support and reflect their husbands and parties' political agendas. In examining representations of first ladies in popular magazines and newspapers from 1901 to 1921 in tandem with letters, memoirs, and other personal papers from these women, a clear pattern emerges. Despite personal differences, first ladies in the Progressive Era represented themselves according to a specific formula in the modern press. The images, constructed by first ladies in this time period, reflect shifts in economic, social, and political life in Progressive Era America, which called for women to be independent and intelligent yet still maintain their femininity and domesticity.
ContributorsHorohoe, Jill (Author) / Gullett, Gayle (Thesis advisor) / Longley, Rodney K (Committee member) / Warren-Findley, Jannelle (Committee member) / Arizona State University (Publisher)
Created2011
149785-Thumbnail Image.png
Description
Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This

Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011