Matching Items (816)
Filtering by

Clear all filters

150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
149704-Thumbnail Image.png
Description
There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The percentage of obese children in the United States has more

There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The percentage of obese children in the United States has more than doubled since 1970, and up to 33% of the children in the United States are currently overweight. Among the 33% of children who are overweight, 25% are obese, and 14% have type 2 diabetes, previously considered to be a condition found only in adults. This mixed-method study with a string qualitative component study examined three aspects of federally mandated local wellness polices. The study investigated the policies themselves, how the policies are understood in the local school setting, with a particular focus on the impact the policies have had on school meals. The bulk of the research data was generated through 8 in-depth interviews. The interviews were conducted with key stakeholders within 2 elementary school districts in Arizona. In addition, the evaluation of 20 local wellness polices was conducted via a rubric scoring system. The primary component found to be lacking in local wellness policies was the evaluation method. Recommendations for school districts include the establishment of a clear method of measurement.
ContributorsCrawford, Sara S (Author) / Mccarty, Teresa L. (Thesis advisor) / Molnar, Alex (Thesis advisor) / Montoya, Araceli (Committee member) / Arizona State University (Publisher)
Created2011
150018-Thumbnail Image.png
Description
Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at

Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at the time the death occurs as well as in the ensuing months. Seidman's (2006) three-interview format was used as a template for the interviews of 11 women, ranging in age from 19 to 78 and whose mothers died when the women were adolescents. The interviews were primarily conducted in one sitting, transcribed, and then analyzed for common themes that connected to the research on the topic. Those themes include grieving, the role of caring in education, the role of teacher as the second mother, mother-daughter relationships, and the impact of parent death on schooling. These themes from the data cross cut with thematic strands within the study's theoretical framework: the nurturing and empathetic role of the mother, a desire of the daughter not to be different, and the ethics of caring. Findings in this study reveal that the negative impacts of mother loss are felt in diffuse ways, such as a lack of academic or emotional encouragement. Many women discussed the need and availability of support groups including groups at colleges. One practical implication of these findings is schools need to become caring communities in which caring is the norm for all students and teachers, thereby providing all students with needed support in times of crisis. The implications for further research include the impact of the mother death on the education of daughters, how volunteering with an organization related to the cause of the mother's death assists the daughter and types of programs most important to a student's success in post-secondary education. Adolescents are in a time of great change in their lives, and for a daughter, the loss of a mother has an everlasting, life-changing impact.
ContributorsRatti, Theresa Helen McLuskey (Author) / Mccarty, Teresa L (Thesis advisor) / Fischman, Gustavo E. (Committee member) / Powers, Jeanne M. (Committee member) / Arizona State University (Publisher)
Created2011
149979-Thumbnail Image.png
Description
The purpose of this study was to examine compulsory schooling in the United States and its potential to provide an inconsistent avenue to employment for students from neighborhoods of differing socioeconomic status. Specifically, this study asked why do students from privileged neighborhoods typically end up in positions of ownership and

The purpose of this study was to examine compulsory schooling in the United States and its potential to provide an inconsistent avenue to employment for students from neighborhoods of differing socioeconomic status. Specifically, this study asked why do students from privileged neighborhoods typically end up in positions of ownership and management while those from impoverished urban or rural neighborhoods end up in working-class positions or involved in cycles of incarceration and poverty? This research involved the use of qualitative methods, including participant observation and interview, as well as photography, to take a look at a reputable private day school in the southwest. Data was collected over the span of eight weeks and was then analyzed and compared with preexisting data on the schooling experience of students from impoverished urban and rural neighborhoods, particularly data focused on juvenile detention centers. Results showed that compulsory schooling differs in ways that contribute to the preexisting hierarchical class structure. The research suggests that schooling can be detrimental to the future quality of life for students in impoverished neighborhoods, which questions a compulsory school system that exists within the current hierarchical class system.
ContributorsTheodoropoulos, Eftyhia (Author) / Margolis, Eric (Thesis advisor) / Nakagawa, Kathryn (Committee member) / Appleton, Nicholas (Committee member) / Arizona State University (Publisher)
Created2011
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149988-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means of diagnosing the disease before neurodegeneration is significant and sadly there is no cure that controls its progression. The protein beta-amyloid or Aâ plays an important role in the progression of the disease. It is formed from the cleavage of the Amyloid Precursor Protein by two enzymes - â and ã-secretases and is found in the plaques that are deposits found in Alzheimer brains. This work describes the generation of therapeutics based on inhibition of the cleavage by â-secretase. Using in-vitro recombinant antibody display libraries to screen for single chain variable fragment (scFv) antibodies; this work describes the isolation and characterization of scFv that target the â-secretase cleavage site on APP. This approach is especially relevant since non-specific inhibition of the enzyme may have undesirable effects since the enzyme has been shown to have other important substrates. The scFv iBSEC1 successfully recognized APP, reduced â-secretase cleavage of APP and reduced Aâ levels in a cell model of Alzheimer's Disease. This work then describes the first application of bispecific antibody therapeutics to Alzheimer's Disease. iBSEC1 scFv was combined with a proteolytic scFv that enhances the "good" pathway (á-secretase cleavage) that results in alternative cleavage of APP to generate the bispecific tandem scFv - DIA10D. DIA10D reduced APP cleavage by â-secretase and steered it towards the "good" pathway thus increasing the generation of the fragment sAPPá which is neuroprotective. Finally, treatment with iBSEC1 is evaluated for reduced oxidative stress, which is observed in cells over expressing APP when they are exposed to stress. Recombinant antibody based therapeutics like scFv have several advantages since they retain the high specificity of the antibodies but are safer since they lack the constant region and are smaller, potentially facilitating easier delivery to the brain
ContributorsBoddapati, Shanta (Author) / Sierks, Michael (Thesis advisor) / Arizona State University (Publisher)
Created2011
150017-Thumbnail Image.png
Description
The United States is facing an emerging principal shortage. This study examines an intervention to deliver professional development for assistant principals on their way to becoming principals. The intervention intended to boost their sense of efficacy as if they were principals while creating a supportive community of professionals for ongoing

The United States is facing an emerging principal shortage. This study examines an intervention to deliver professional development for assistant principals on their way to becoming principals. The intervention intended to boost their sense of efficacy as if they were principals while creating a supportive community of professionals for ongoing professional learning. The community was designed much like a professional learning community (PLC) with the intent of developing into a community of practice (CoP). The participants were all elementary school assistant principals in a Title I district in a large metropolitan area. The researcher interviewed an expert set of school administrators consisting of superintendents and consultants (and others who have knowledge of what a good principal ought to be) about what characteristics and skills were left wanting in principal applicants. The data from these interviews provided the discussion topics for the intervention. The assistant principals met regularly over the course of a semester and discussed the topics provided by the expert set of school administrators. Participant interaction within the sessions followed conversation protocols. The researcher was also a participant in the group and served as the coordinator. Each session was recorded and transcribed. The researcher used a mixed methods approach to analyze the intervention. Participants were surveyed to measure their efficacy before and after the intervention. The session transcripts were analyzed using open and axial coding. Data showed no statistically significant change in the participants' sense of efficacy. Data also showed the participants became a coalescing community of practice.
ContributorsRichman, Bryan (Author) / Puckett, Kathleen (Thesis advisor) / Smith, Jeffery (Committee member) / Foulger, Teresa (Committee member) / Arizona State University (Publisher)
Created2011
149682-Thumbnail Image.png
Description
It is commonly accepted that undergraduate degree attainment rates must improve if postsecondary educational institutions are to meet macroeconomic demands. Involvement in co-curricular activities, such as student clubs and organizations, has been shown to increase students' satisfaction with their college experience and the rates by which they might persist. Yet,

It is commonly accepted that undergraduate degree attainment rates must improve if postsecondary educational institutions are to meet macroeconomic demands. Involvement in co-curricular activities, such as student clubs and organizations, has been shown to increase students' satisfaction with their college experience and the rates by which they might persist. Yet, strategies that college administrators, faculties, and peer leaders may employ to effectively promote co-curricular engagement opportunities to students are not well developed. In turn, I created the Sky Leaders program, a retention-focused intervention designed to promote commuter student involvement in academically-purposeful activities via faculty- and peer-lead mentoring experiences. Working from an interpretivist research paradigm, this quasi-experimental mixed methods action research study was intended to measure the intervention's impact on participants' re-enrollment and reported engagement rates, as well as the effectiveness of its conceptual and logistical aspects. I used enrollment, survey, interview, observation, and focus group data collection instruments to accommodate an integrated data procurement process, which allowed for the consideration of several perspectives related to the same research questions. I analyzed all of the quantitative data captured from the enrollment and survey instruments using descriptive and inferential statistics to explore statistically and practically significant differences between participant groups. As a result, I identified one significant finding that had a perceived positive effect. Expressly, I found the difference between treatment and control participants' reported levels of engagement within co-curricular activities to be statistically and practically significant. Additionally, consistent with Glaser and Strauss' grounded theory approach, I employed open, axial, and selective coding procedures to analyze all of the qualitative data obtained via open-ended survey items, as well as interview, observation, and focus group instruments. After I reviewed and examined the qualitative data corpus, I constructed six themes reflective of the participants' programmatic experiences as well as conceptual and logistical features of the intervention. In doing so, I found that faculty, staff, and peer leaders may efficaciously serve in specific mentoring roles to promote co-curricular engagement opportunities and advance students' institutional academic and social integration, thereby effectively curbing their potential college departure decisions, which often arise out of mal-integrative experiences.
ContributorsSebold, Brent (Author) / Beardsley, Audrey (Thesis advisor) / Serafini, Frank (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011