Matching Items (17)
Filtering by

Clear all filters

147825-Thumbnail Image.png
Description

A research project turned creative project focusing on the narrative of the student's perspective in the Next Generation Service Corps scholarship program. Using survey results from the program members, narratives of their experiences were compiled to offer insight and direction for the growth of the program.<br/><br/>A video of the defense

A research project turned creative project focusing on the narrative of the student's perspective in the Next Generation Service Corps scholarship program. Using survey results from the program members, narratives of their experiences were compiled to offer insight and direction for the growth of the program.<br/><br/>A video of the defense can be found at this link: https://youtu.be/O63NRz0z1Ys

ContributorsJanezic, John Henry (Author) / Hunt, Brett (Thesis director) / Smith, Jacqueline (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150233-Thumbnail Image.png
Description
The work described in the thesis involves the synthesis of a molecular triad which is designed to undergo proton coupled electron transfer (PCET) upon irradiation with light. Photoinduced PCET is an important process that many organisms use and the elucidation of its mechanism will allow further understanding of this process

The work described in the thesis involves the synthesis of a molecular triad which is designed to undergo proton coupled electron transfer (PCET) upon irradiation with light. Photoinduced PCET is an important process that many organisms use and the elucidation of its mechanism will allow further understanding of this process and its potential applications. The target compound designed for PCET studies consists of a porphyrin chromophore (also a primary electron donor), covalently linked to a phenol-imidazole (secondary electron donor), and a C60 (primary electron acceptor). The phenol-imidazole moiety of this system is modeled after the TyrZ His-190 residues in the reaction center of Photosystem II (PS II). These residues participate in an intermolecular H-bond between the phenol side chain of TyrZ and the imidazole side chain of His-190. The phenol side chain of TyrZ is the electron transfer mediator between the oxygen evolving complex (OEC) and P680 (primary electron donor) in PSII. During electron transfer from TyrZ to P680*+, the phenolic proton of TyrZ becomes highly acidic (pKa~-2) and the hydrogen is preferentially transferred to the relatively basic imidazole of His-190 through a pre-existing hydrogen bond. This PCET process avoids a charged intermediate, on TyrZ, and results in a neutral phenolic radical (TyrZ*). The current research consists of building a molecular triad, which can mimic the photoinduced PCET process of PSII. The following, documents the synthetic progress in the synthesis of a molecular triad designed to investigate the mechanism of PCET as well as gain further insight on how this process can be applied in artificial photosynthetic devices.
ContributorsPatterson, Dustin (Author) / Moore, Ana L (Thesis advisor) / Gust, Devens (Committee member) / Skibo, Edward B (Committee member) / Arizona State University (Publisher)
Created2011
152279-Thumbnail Image.png
Description
Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes

Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes have been reported previously. All of the early events in natural photosynthesis responsible for the conversion of solar energy to electric potential energy occur within proteins and phospholipid membranes that act as scaffolds for arranging the active chromophores. Accordingly, for creating artificial photovoltaic (PV) systems, scaffolds are required to imbue structure to the systems. An approach to incorporating modular design into solid-state organic mimics of the natural system is presented together with how conductive scaffolds can be utilized in organic PV systems. To support the chromophore arrays present within this design and to extract separated charges from within the structure, linear pyrazine-containing molecular ribbons were chosen as candidates for forming conductive linear scaffolds that could be functionalized orthogonally to the linear axis. A series of donor-wire-acceptor (D-W-A) compounds employing porphyrins as the donors and a C60 fullerene adduct as the acceptors have been synthesized for studying the ability of the pyrazine-containing hetero-aromatic wires to mediate photoinduced electron transfer between the porphyrin donor and fullerene acceptor. Appropriate substitutions were made and the necessary model compounds useful for dissecting the complex photochemistry that the series is expected to display were also synthesized. A dye was synthesized using a pyrazine-containing heteroaromatic spacer that features two porphyrin chromophores. The dye dramatically outperforms the control dye featuring the same porphyrin and a simple benzoic acid linker. A novel, highly soluble 6+kDa extended phthalocyanine was also synthesized and exhibits absorption out to 900nm. The extensive functionalization of the extended phthalocyanine core with dodecyl groups enabled purification and characterization of an otherwise insoluble entity. Finally, in the interest of incorporating modular design into plastic solar cells, a series of porphyrin-containing monomers have been synthesized that are intended to form dyadic and triadic molecular-heterojunction polymers with dedicated hole and electron transport pathways during electrochemical polymerization.
ContributorsWatson, Brian Lyndon (Author) / Gust, Devens (Thesis advisor) / Gould, Ian (Committee member) / Moore, Ana L (Committee member) / Arizona State University (Publisher)
Created2013
151494-Thumbnail Image.png
Description
ABSTRACT Manipulation of biological targets using synthetic or naturally occurring organic compounds has been the focal point of medicinal chemistry. The work described herein centers on the synthesis of organic small molecules that are targeted either to cell surface receptors, to the ribosomal catalytic center or to human immunodeficiency virus

ABSTRACT Manipulation of biological targets using synthetic or naturally occurring organic compounds has been the focal point of medicinal chemistry. The work described herein centers on the synthesis of organic small molecules that are targeted either to cell surface receptors, to the ribosomal catalytic center or to human immunodeficiency virus reverse transcriptase. Bleomycins (BLMs) are a family of naturally occurring glycopeptidic antitumor agents with an inherent selectivity towards cancer cells. DeglycoBLM, which lacks the sugar moiety of bleomycin, has much lower cytotoxicity in cellular assays. A recent study using microbbuble conjugates of BLM and deglycoBLM showed that BLM was able to selectively bind to breast cancer cells, whereas the deglyco analogue was unable to target either the cancer or normal cells. This prompted us to further investigate the role of the carbohydrate moiety in bleomycin. Fluorescent conjugates of BLM, deglycoBLM and the BLM carbohydrate were studied for their ability to target cancer cells. Work presented here describes the synthesis of the fluorescent carbohydrate conjugate. Cell culture assays showed that the sugar moiety was able to selectively target various cancer cells. A second conjugate was prepared to study the importance of the C-3 carbamoyl group present on the mannose residue of the carbohydrate. Three additional fluorescent probes were prepared to improve the uptake of this carbohydrate moiety into cancer cells. Encouraged by the results from the fluorescence experiments, the sugar moiety was conjugated to a cytotoxic molecule to selectively deliver this drug into cancer cells. The nonsense codon suppression technique has enabled researchers to site specifically incorporate noncanonical amino acids into proteins. The amino acids successfully incorporated this way are mostly α-L-amino acids. The non-α-L-amino acids are not utilized as substrates by ribosome catalytic center. Hoping that mutations near the ribosome peptidyltransferase site might alleviate its bias towards α-L-amino acids, a library of modified ribosomes was generated. Analogues of the naturally occurring antibiotic puromycin were used to select promising candidates that would allow incorporation of non-α-L-amino acids into proteins. Syntheses of three different puromycin analogues are described here. The reverse transcriptase enzyme from HIV-1 (HIV-1 RT) has been a popular target of HIV therapeutic agents due to its crucial role in viral replication. The 4-chlorophenyl hydrazone of mesoxalic acid (CPHM) was identified in a screen designed to find inhibitors of strand transfer reactions catalyzed by HIV-1 RT. Our collaborators designed several analogues of CPHM with different substituents on the aromatic ring using molecular docking simulations. Work presented here describes the synthesis of eight different analogues of CPHM.
ContributorsPaul, Rakesh (Author) / Hecht, Sidney M. (Thesis advisor) / Moore, Ana L (Committee member) / Rose, Seth D (Committee member) / Arizona State University (Publisher)
Created2013
152090-Thumbnail Image.png
Description
Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy

Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy in the form of a fuel via systems capable of carrying out photo-induced electron transfer to drive the production of hydrogen from water. Herein is detailed progress in using photo-induced stepwise electron transfer to drive the oxidation of water and reduction of protons to hydrogen. In the design, use of more blue absorbing porphyrin dyes to generate high-potential intermediates for oxidizing water and more red absorbing phthalocyanine dyes for forming the low potential charge needed for the production of hydrogen have been utilized. For investigating water oxidation at the photoanode, high potential porphyrins such as, bis-pyridyl porphyrins and pentafluorophenyl porphyrins have been synthesized and experiments have aimed at the co-immobilization of this dye with an IrO2-nH2O catalyst on TiO2. To drive the cathodic reaction of the water splitting photoelectrochemical cell, utilization of silicon octabutoxy-phthalocyanines have been explored, as they offer good absorption in the red to near infrared, coupled with low potential photo-excited states. Axially and peripherally substituted phthalocyanines bearing carboxylic anchoring groups for the immobilization on semiconductors such as TiO2 has been investigated. Ultimately, this work should culminate in a photoelectrochemical cell capable of splitting water to oxygen and hydrogen with the only energy input from light. A series of perylene dyes bearing multiple semi-conducting metal oxide anchoring groups have been synthesized and studied. Results have shown interfacial electron transfer between these perylenes and TiO2 nanoparticles encapsulated within reverse micelles and naked nanoparticles. The binding process was followed by monitoring the hypsochromic shift of the dye absorption spectra over time. Photoinduced electron transfer from the singlet excited state of the perylenes to the TiO2 conduction band is indicated by emission quenching of the TiO2-bound form of the dyes and confirmed by transient absorption measurements of the radical cation of the dyes and free carriers (injected electrons) in the TiO2.
ContributorsBergkamp, Jesse J (Author) / Moore, Ana L (Thesis advisor) / Mariño-Ochoa, Ernesto (Thesis advisor) / Gust, Devens J (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
151232-Thumbnail Image.png
Description
Understanding the mechanisms of metalloproteins at the level necessary to engineer new functionalities is complicated by the need to parse the complex overlapping functions played by each amino acid without negatively impacting the host organism. Artificial or designed metallopeptides offer a convenient and simpler platform to explore metal-ligand interactions in

Understanding the mechanisms of metalloproteins at the level necessary to engineer new functionalities is complicated by the need to parse the complex overlapping functions played by each amino acid without negatively impacting the host organism. Artificial or designed metallopeptides offer a convenient and simpler platform to explore metal-ligand interactions in an aqueous, biologically relevant coordination context. In this dissertation, the peptide SODA (ACDLPCG), a synthetic derivative of the nickel-binding pocket of nickel superoxide dismutase, is used as a scaffold to construct a variety of novel metallopeptides and explore their reactivity. In Chapter 2, I show that SODA binds Co(II) and the resulting peptide, CoSODA, reacts with oxygen in an unexpected two step process that models the biosynthesis of Co nitrile hydratase. First, the thiolate sulfur is oxidized and then the metallocenter is oxidized to Co(III). In Chapter 3, I show that both CoSODA and CuSODA form CN- adducts. Spectroscopic investigations of these metallopeptides are compared with data from NiSODA and Ni(CN)SODA to show the remarkable geometric versatility of SODA with respect to interactions with metallocenters. In Chapter 4, exploiting the propensity of sulfur ligands to form bridging structures, NiSODA is used as a metallosynthon to direct synthesis of hetero bi- and tri-metallic peptides as models for [NiFe]-hydrogenases and the A cluster of acetyl-CoA synthase carbon monoxide dehydrogenase. Building on this synthetic strategy, in Chapter 5, I demonstrate synthesis of NiRu complexes including a Ru(bipyridine)2 moiety and characterize their photochemistry.
ContributorsDutta, Arnab (Author) / Jones, Anne K (Thesis advisor) / Moore, Ana L (Committee member) / Vermass, Willem (Committee member) / Arizona State University (Publisher)
Created2012
148258-Thumbnail Image.png
Description

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.

ContributorsRana, Mannat (Co-author) / Levine, Benjamin (Co-author) / Martin, Thomas (Thesis director) / Rendell, Dawn (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148307-Thumbnail Image.png
Description

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.

ContributorsRana, Mannat (Co-author) / Levine, Benjamin (Co-author) / Martin, Thomas (Thesis director) / Rendell, Dawn (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148315-Thumbnail Image.png
Description

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU

The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.

ContributorsLevine, Benjamin (Co-author) / Rana, Mannat (Co-author) / Martin, Thomas (Thesis director) / Rendell, Dawn (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131872-Thumbnail Image.png
Description
Enzyme Replacement Therapy (ERT) is a treatment often used for patients with disorders that affect the production of various enzymes within the body, such as Cystic Fibrosis and Fabry Disease. ERT involves the use of artificially-produced enzymes, which can be derived from humans, pigs, and bacteria. Generally, enzymes derived from

Enzyme Replacement Therapy (ERT) is a treatment often used for patients with disorders that affect the production of various enzymes within the body, such as Cystic Fibrosis and Fabry Disease. ERT involves the use of artificially-produced enzymes, which can be derived from humans, pigs, and bacteria. Generally, enzymes derived from porcine and bacterial sources are much less expensive and more accessible than those derived from a human source. This, and the ethical implications that porcine enzymes carry, make the decision of choosing treatment simple to some and complex to others. Ethically, human-derived enzymes are often considered more ethical, while not conflicting with religious beliefs and practices as porcine-derived enzymes do.
In order to further compare porcine and human-derived enzymes, a determination of the enzyme effectiveness was done via digestion simulation. The digestion for both the human and porcine-derived enzymes consisted of three steps: oral, gastric, and intestinal. After the digestion, the absorbance for each enzyme class as well as a dilution curve of the formula used was read and recorded. Using the standard dilution curve and the absorbance values for each unknown, the formula and thus enzyme concentration that was lost through the reaction was able to be calculated.
The effectiveness of both the human and porcine enzymes, determined by the percent of formula lost, was 18.2% and 19.7%, respectively, with an error of 0.6% from the spectrophotometer, and an error of about 10% from the scale used for measuring the enzymes. This error was likely due to the small mass required of the enzymes and can be prevented in the future by performing the experiment at a larger scale.
ContributorsBlevins, Brianna R (Author) / Martin, Thomas (Thesis director) / McILwraith, Heide (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05