Matching Items (14)
Filtering by

Clear all filters

151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
150393-Thumbnail Image.png
Description
ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D

ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D GB network to look into the effects of GB characteristics on this phenomenon, with emphasis on conditions that can lead to percolation. A finite element model was created based on the microstructure of a depleted UO2 sample characterized by Electron Backscattering Diffraction (EBSD). The GBs were categorized into high (D2), low (D1) and bulk diffusivity (Dbulk) based on their misorientation angles and Coincident Site Lattice (CSL) types. The simulation was run using different diffusivity ratios (D2/Dbulk) ranging from 1 to 10^8. The model was set up in three ways: constant temperature case, temperature gradient effects and window methods that mimic the environments in a Light Water Reactor (LWR). In general, the formation of percolation paths was observed at a ratio higher than 10^4 in the measured GB network, which had a 68% fraction of high diffusivity GBs. The presence of temperature gradient created an uneven concentration distribution and decreased the overall mass flux. Finally, radial temperature and fission gas concentration profiles were obtained for a fuel pellet in operation using an approximate 1-D model. The 100 µm long microstructurally explicit model was used to simulate, to the scale of a real UO2 pellet, the mass transport at different radial positions, with boundary conditions obtained from the profiles. Stronger percolation effects were observed at the intermediate and periphery position of the pellet. The results also showed that highest mass flux happens at the edge of a pellet at steady state to accommodate for the sharp concentration drop.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Dey, Sandwip (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150314-Thumbnail Image.png
Description
Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2*-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O}). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm+ cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.
ContributorsZeller, Robert August (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
Description
This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project

This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses correlate strongly with adsorption charge. Electrocatalytic oxidation of CO on Pt{111} and Ru/Pt{111} gives a tensile surface stress. A numerical method was developed to separate both current and stress into background and active components. Applying this model to the CO oxidation signal on Ru{0001} gives a tensile surface stress and elucidates the rate limiting steps on all three electrodes. The enhanced catalysis of Ru/Pt{111} is confirmed to be bi-functional in nature: Ru provides adsorbed hydroxide to Pt allowing for rapid CO oxidation. The majority of Li-ion batteries have anodes consisting of graphite particles with polyvinylidene fluoride (PVDF) as binder. Intercalation of Li into graphite occurs in stages and produces anisotropic strains. As batteries have a fixed size and shape these strains are converted into mechanical stresses. Conventionally staging phenomena has been observed with X-ray diffraction and collaborated electrochemically with the potential. Work herein shows that staging is also clearly observed in stress. The Li staging potentials as measured by differential chronopotentiometry and stress are nearly identical. Relative peak heights of Li staging, as measured by these two techniques, are similar during reduction, but differ during oxidation due to non-linear stress relaxation phenomena. This stress relaxation appears to be due to homogenization of Li within graphite particles rather than viscous flow of the binder. The first Li reduction wave occurs simultaneously with formation of a passivating layer known as the solid electrolyte interphase (SEI). Preliminary experiments have shown the stress of SEI formation to be tensile (~+1.5 MPa).
ContributorsMickelson, Lawrence (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Venables, John (Committee member) / Arizona State University (Publisher)
Created2011
150104-Thumbnail Image.png
Description
A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior

A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior of a wrought Al alloy (2024-T351) is studied using notched uniaxial samples with load axes along either the longitudinal or transverse direction, and center notched biaxial samples (cruciforms) with a uniaxial stress state of equivalent amplitude about the bore. Local composition and crystallography were quantified before testing using Energy Dispersive Spectroscopy and Electron Backscattering Diffraction. Interrupted fatigue testing at stresses close to yielding was performed on the samples to nucleate and propagate short cracks and nucleation sites were located and characterized using standard optical and Scanning Electron Microscopy. Results show that crack nucleation occurred due to fractured particles for longitudinal dogbone/cruciform samples; while transverse samples nucleated cracks by debonded and fractured particles. Change in crack nucleation mechanism is attributed to dimensional change of particles with respect to the material axes caused by global anisotropy. Crack nucleation from debonding reduced life till matrix fracture because debonded particles are sharper and generate matrix cracks sooner than their fractured counterparts. Longitudinal samples experienced multisite crack initiation because of reduced cross sectional areas of particles parallel to the loading direction. Conversely the favorable orientation of particles in transverse samples reduced instances of particle fracture eliminating multisite cracking and leading to increased fatigue life. Cyclic tests of cruciform samples showed that crack growth favors longitudinal and transverse directions with few instances of crack growth 45 degrees (diagonal) to the rolling direction. The diagonal crack growth is attributed to stronger influences of local anisotropy on crack nucleation. It was observed that majority of the time crack nucleation is governed by the mixed influences of global and local anisotropies. Measurements of crystal directions parallel to the load on main crack paths revealed directions clustered near the {110} planes and high index directions. This trend is attributed to environmental effects as a result of cyclic testing in air.
ContributorsMakaš, Admir (Author) / Peralta, Pedro D. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150482-Thumbnail Image.png
Description
This research focuses on the stress and structure evolution observed in-situ during the earliest stages of thin film growth in Cu on Au(111)-reconstruction. For the research, an ultra high vacuum-scanning tunneling microscopy (UHV-STM) system was modified to have the additional capabilities of in-situ deposition and in-situ stress evolution monitoring. The

This research focuses on the stress and structure evolution observed in-situ during the earliest stages of thin film growth in Cu on Au(111)-reconstruction. For the research, an ultra high vacuum-scanning tunneling microscopy (UHV-STM) system was modified to have the additional capabilities of in-situ deposition and in-situ stress evolution monitoring. The design and fabrication processes for the modifications are explained in detail. The deposition source enabled imaging during the deposition of Cu thin films, while also being columnar enough to avoid negatively impacting the function of the microscope. It was found that the stress-induced changes in piezo voltage occurred over a substantially longer time scale and larger piezo scale than used during imaging, allowing for the deconvolution of the two sources of piezo voltage change. The intrinsic stress evolution observed at the onset of Cu growth was tensile in character and reached a maximum of 0.19 N/m at approximately 0.8ML, with an average tensile slope of 1.0GPa. As the film thickness increased beyond 0.8 ML, the stress became less tensile as the observation of disordered stripe and trigon patterns of misfit dislocations began to appear. The transport of atoms from the surface of enlarged Cu islands into the strained layer played an important role in this stage, because they effectively reduce the activation barrier for the formation of the observed surface structures. A rich array of structures were observed in the work presented here including stripe, disordered stripe and trigon patterns co-existing in a single Cu layer. Heteroepitaxial systems in existing literature showed a uniform structure in the single layer. The non-uniform structures in the single layer of this work may be attributed to the room temperature Cu growth, which can kinetically limit uniform pattern formation. The development of the UHV-STM system with additional capabilities for this work is expected to contribute to research for the stress and structure relationships of many other heteroepitaxial systems.
ContributorsNah, Jungwoo (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2012
156130-Thumbnail Image.png
Description
Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties. To fulfill the variety of requirements for different applications, chemical

Two-dimensional transition metal dichalcogenides (TMDCs) such as

molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) are attractive for use in biotechnology, optical and electronics devices due to their promising and tunable electrical, optical and chemical properties. To fulfill the variety of requirements for different applications, chemical treatment methods are developed to tune their properties. In this dissertation, plasma treatment, chemical doping and functionalization methods have been applied to tune the properties of TMDCs. First, plasma treatment of TMDCs results in doping and generation of defects, as well as the synthesis of transition metal oxides (TMOs) with rolled layers that have increased surface-to-volume ratio and are promising for electrochemical applications. Second, chemical functionalization is another powerful approach for tuning the properties of TMDCs for use in many applications. To covalently functionalize the basal planes of TMDCs, previous reports begin with harsh treatments like lithium intercalation that disrupt the structure and lead to a phase transformation from semiconducting to metallic. Instead, this work demonstrates the direct covalent functionalization of semiconducting MoS2 using aryl diazonium salts without lithium treatments. It preserves the structure and semiconducting nature of MoS2, results in covalent C-S bonds on basal planes and enables different functional groups to be tethered to the MoS2 surface via the diazonium salts. The attachment of fluorescent proteins has been used as a demonstration and it suggests future applications in biology and biosensing. The effects of the covalent functionalization on the electronic transport properties of MoS2 were then studied using field effect transistor (FET) devices.
ContributorsChu, Ximo (Author) / Wang, Qing Hua (Thesis advisor) / Sieradzki, Karl (Committee member) / Green, Alexander (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
154912-Thumbnail Image.png
Description
There is a fundamental attractiveness about harnessing renewable energy in an age when sustainability is an ethical norm. Lithium ion batteries and hydrogen fuels are considered the most promising energy source instead of fossil fuels. This work describes the investigation of new cathode materials and devices architectures for lithium ion

There is a fundamental attractiveness about harnessing renewable energy in an age when sustainability is an ethical norm. Lithium ion batteries and hydrogen fuels are considered the most promising energy source instead of fossil fuels. This work describes the investigation of new cathode materials and devices architectures for lithium ion batteries, and photocatalysts for their usage in water splitting and waste water treatment.

LiCoO2 and LiNi1/3Mn1/3Co1/3O2 were exfoliated into nanosheets using electrochemical oxidation followed by intercalation of tetraethylammonium cations. The nanosheets were purified using dialysis and electrophoresis. The nanosheets were successfully restacked into functional cathode materials with microwave hydrothermal assistance, indicating that new cathodes can be obtained by reassembling nanosheets. This method can pave the way for the synthesis of materials with novel structures and electrochemical properties, as well as facilitate the fabrication of hybrid and composite structures from different nanosheets as building blocks.

Paper folding techniques are used in order to compact a Li-ion battery and increase its energy per footprint area. Full cells were prepared using Li4Ti5O12 and LiCoO2 powders deposited onto current collectors consisting of paper coated with carbon nanotubes. Folded cells showed higher areal capacities compared to the planar versions. Origami lithium-ion battery made in this method that can be deformed at an unprecedented high level, including folding, bending and twisting.

Spray pyrolysis was used to prepare films of AgInS2 with and without Sn as an extrinsic dopant. The photoelectrochemical performance of these films was evaluated after annealing under a N2 or S atmosphere with different amounts of the Sn dopant. Density Function Theory (DFT) was used to calculate the band structure of AgInS2 and understand the role of Sn doping in the observed properties.

Cr(VI) removal was investigated using multiple oxide photocatalyst and additives. The efficiency for Cr(VI) removal using these photocatalysts was investigated in synthetic neutral and alkaline water, as well as in cooling tower blowdown water. While sulfite alone can chemically reduce Cr(VI), sulfite in combination with a photocatalyst resulted in faster and complete removal of Cr(VI) in 10 min using a SO32−/Cr(VI) ratio >35 in pH ∼ 8 solutions.
ContributorsCheng, Qian (Author) / Chan, Candace Kay (Thesis advisor) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
155096-Thumbnail Image.png
Description
Structural stability and performance of structural materials is important for energy production, whether renewable or non renewable, to have uninterrupted energy supply, that is economically feasible and safe. High temperature metallic materials used in the turbines of AORA, an Israel-based clean energy producer, often experience high temperature, high stress and

Structural stability and performance of structural materials is important for energy production, whether renewable or non renewable, to have uninterrupted energy supply, that is economically feasible and safe. High temperature metallic materials used in the turbines of AORA, an Israel-based clean energy producer, often experience high temperature, high stress and foreign object damage (FOD). In this study, efforts were made to study the effects of FOD on the fatigue life of these materials and to understand their failure mechanisms. The foreign objects/debris recovered by AORA were characterized using Powder X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) to identify composition and phases. To perform foreign object damage experiment a gas gun was built and results of XRD and EDS were used to select particles to mimic FOD in lab experiments for two materials of interest to AORA: Hastelloy X and SS 347. Electron Backscattering Diffraction, hardness and tensile tests were also performed to characterize microstructure and mechanical properties. Fatigue tests using at high temperature were performed on dog bone samples with and without FOD and the fracture surfaces and well as the regions affected by FOD were analyzed using Scanning Electron Microscopy (SEM) to understand the failure mechanism. The findings of these study indicate that FOD is causing multiple secondary cracks at and around the impact sites, which can potentially grow to coalesce and remove pieces of material, and the multisite damage could also lead to lower fatigue lives, despite the fact that the FOD site was not always the most favorable for initiation of the fatal fatigue crack. It was also seen by the effect of FOD on fatigue life that SS 347 is more susceptible to FOD than Hastelloy X.
ContributorsDobaria, Nirmal (Author) / Peralta, Pedro (Thesis advisor) / Sieradzki, Karl (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2016