Matching Items (16)
Filtering by

Clear all filters

149856-Thumbnail Image.png
Description
Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped

Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped in ~1.67 superhelical turns. Although the nucleosomes are stable protein-DNA complexes, they undergo spontaneous conformational changes that occur in an asynchronous fashion. This conformational dynamics, defined by the "site-exposure" model, involves the DNA unwrapping from the protein core and exposing itself transiently before wrapping back. Physiologically, this allows regulatory proteins to bind to their target DNA sites during cellular processes like replication, DNA repair and transcription. Traditional biochemical assays have stablished the equilibrium constants for the accessibility to various sites along the length of the nucleosomal DNA, from its end to the middle of the dyad axis. Using fluorescence correlation spectroscopy (FCS), we have established the position dependent rewrapping rates for nucleosomes. We have also used Monte Carlo simulation methods to analyze the applicability of FRET fluctuation spectroscopy towards conformational dynamics, specifically motivated by nucleosome dynamics. Another important conformational change that is involved in cellular processes is the disassembly of nucleosome into its constituent particles. The exact pathway adopted by nucleosomes is still not clear. We used dual color fluorescence correlation spectroscopy to study the intermediates during nucleosome disassembly induced by changing ionic strength. Studying the nature of nucleosome conformational change and the kinetics is very important in understanding gene expression. The results from this thesis give a quantitative description to the basic unit of the chromatin.
ContributorsGurunathan, Kaushik (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Woodbury, Neal (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
151401-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable

Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are a series of studies toward this goal. First, a novel and robust strategy of DNA functionalized silver nanoparticles (AgNPs) was developed and DNA functionalized AgNPs were employed for the organization of discrete well-defined dimeric and trimeric structures using a DNA triangular origami scaffold. Assembly of 1:1 silver nanoparticle and gold nanoparticle heterodimer has also been demonstrated using the same approach. Next, the triangular origami structures were used to co-assemble gold nanoparticles (AuNPs) and fluorophores to study the distance dependent and nanogap dependencies of the photonic interactions between them. These interactions were found to be consistent with the full electrodynamic simulations. Further, a gold nanorod (AuNR), an anisotropic nanoparticle was assembled into well-defined dimeric structures with predefined inter-rod angles. These dimeric structures exhibited unique optical properties compared to single AuNR that was consistent with the theoretical calculations. Fabrication of otherwise difficult to achieve 1:1 AuNP- AuNR hetero dimer, where the AuNP can be selectively placed at the end-on or side-on positions of anisotropic AuNR has also been shown. Finally, a click chemistry based approach was developed to organize sugar modified DNA on a particular arm of a DNA origami triangle and used them for site-selective immobilization of small AgNPs.
ContributorsPal, Suchetan (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
149372-Thumbnail Image.png
Description
A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and

A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and a high binding affinity to about six equivalents of Cu2+. The goal of this study is to investigate the Cu2+ binding sites in SmbP and to understand how Cu2+ stabilizes the protein. Preliminary folding experiments indicated that Cu2+ greatly stabilizes SmbP. In this study, protein folding data from circular dichroism (CD) spectroscopy was used to elucidate the role of Cu2+ in stabilizing SmbP structure against unfolding induced by decreased pH, increased temperature, and chemical denaturants. The significant stabilization effects of Cu2+ were demonstrated by the observation that Cu2+-SmbP remained fully folded under extreme environmental conditions, such as acidic pH, 96 °C, and 8 M urea. Also, it was shown that Cu2+ is able to induce the refolding of unfolded SmbP in acidic solutions. These findings imply that the coordination of Cu2+ to histidine residues is responsible for the stabilization effects. The crystal structure of SmbP without Cu2+ has been determined. However, attempts to crystallize Cu2+-SmbP have not been successful. In this study, multidimensional NMR experiments were conducted in order to gain additional information regarding the Cu2+-SmbP structure, in particular its metal binding sites. Unambiguous resonance assignments were successfully made. Cα secondary chemical shifts confirmed that SmbP has a four α-helical structure. A Cu2+-protein titration experiment monitored by NMR indicated a top-to-bottom, sequential metal binding pattern for SmbP. In addition, several bioinformatics tools were used to complement the experimental approach and identity of the ligands in Cu2+-binding sites in SmbP is proposed.
ContributorsYan, Qin (Author) / Francisco, Wilson A (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
152192-Thumbnail Image.png
Description
ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the

ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photo-cleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro-chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole.
ContributorsKumar, Pallav (Author) / Woodbury, Neal (Thesis advisor) / Allen, James (Committee member) / Johnston, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
187793-Thumbnail Image.png
Description
Exploration of long-range conductance in non-redox-active proteins at the single molecule scale is aided by the development of innovative, tailor-made quantitative data analysis techniques. This thesis details the rationale behind the proposed approaches, the steps taken to design and implement every method, and the validation of the methodologies using appropriate

Exploration of long-range conductance in non-redox-active proteins at the single molecule scale is aided by the development of innovative, tailor-made quantitative data analysis techniques. This thesis details the rationale behind the proposed approaches, the steps taken to design and implement every method, and the validation of the methodologies using appropriate experiments, benchmarks, and rigorous statistical data analysis. The first chapter conducts a thorough literature review, sets the stage for the subsequent investigation, and underscores the importance of the research questions addressed in this thesis. The second chapter describes the solvent effects on the electronic conductance of a series of Consensus Tetratricopeptide Repeat proteins (CTPR) measured with Scanning Tunneling Microscopy (STM). The study reveals a reversible reduction in electronic conductance when water (H2O) is replaced with heavy water (D2O) due to a ~6-fold decrease in the carrier diffusion constant as proteins become solvated by D2O. Similar observations are made in a ~7 nm long tryptophan zipper protein, while a phenylalanine zipper protein of comparable length remains unchanged in D2O, highlighting the critical role of aromatic residues in proteins lacking redox cofactors. As an extension to this finding, the third chapter describes the development of a machine-learning model to detect the presence of a protein and identify essential features helping in the detection. For this purpose, a solid-state device was engineered to measure the conductance of CTPR-16 protein wires. This approach addresses the limitations in characterizing the STM gap, enables the collection of stable current vs. time data, and provides a statistical understanding of the electronic transport through a protein. The final chapter investigates real-time changes in conductance in response to protein conformation alterations. A deoxyribonucleic acid (DNA) polymerase Φ29 was chosen for its potential utility as a single-molecule DNA sequencing device. The modified enzyme was bound to electrodes functionalized with streptavidin. Φ29 connected by one biotinylated contact and a second nonspecific contact showed rapid small fluctuations in current when activated. Signals were greatly enhanced with two specific contacts. Features in the distributions of conductance increased by a factor of 2 or more over the open-to-closed conformational transition of the polymerase.
ContributorsMukherjee, Sohini (Author) / Lindsay, Stuart (Thesis advisor) / Moore, Thomas (Committee member) / Qing, Quan (Committee member) / Arizona State University (Publisher)
Created2023
154479-Thumbnail Image.png
Description
DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a

DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their “electronic fingerprints”. Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques.

To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day.

In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition, Pyrene reader showed higher DNA base-calling accuracy compare to Imidazole reader, the workhorse in our previous projects. In my other projects, various amino acids and RNA nucleoside monophosphates were also classified with significantly high accuracy using RT. Twenty naturally occurring amino acids and various RNA nucleosides (four canonical and two modified) were successfully identified. Thus, we envision nanopore sequencing biomolecules using Recognition Tunneling (RT) that should provide comprehensive betterment over current technologies in terms of time, chemical and instrumental cost and capability of de novo sequencing.
ContributorsSen, Suman (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Gould, Ian R. (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2016
154824-Thumbnail Image.png
Description
The ability to manipulate the interaction between small molecules and biological macromolecules towards the study of disease pathogenesis has become a very important part of research towards treatment options for various diseases. The work described here shows both the use of DNA oligonucleotides as carriers for a nicotine hapten small

The ability to manipulate the interaction between small molecules and biological macromolecules towards the study of disease pathogenesis has become a very important part of research towards treatment options for various diseases. The work described here shows both the use of DNA oligonucleotides as carriers for a nicotine hapten small molecule, and the use of microsomes to study the stability of compounds derived to treat mitochondrial diseases.

Nicotine addiction is a worldwide epidemic because nicotine is one of the most widely used addictive substances. It is linked to early death, typically in the form of heart or lung disease. A new vaccine conjugate against nicotine held within a DNA tetrahedron delivery system has been studied. For this purpose, several strands of DNA, conjugated with a modified dTpT having three or six carbon atom alkynyl linkers, have been synthesized. These strands have later been conjugated to three separate hapten small molecules to analyze which conjugates formed would be optimal for further testing in vivo.

Mitochondrial diseases are hard to treat, given that there are so many different variations to treat. There is no one compound that can treat all mitochondrial and neurodegenerative diseases; however, improvements can be made to compounds currently under study to improve the conditions of those afflicted. A significant issue leading to compounds failing in clinical trials is insufficient metabolic stability. Many compounds have good biological activity, but once introduced to an animal, are not stable enough to have any effect. Here, several synthesized compounds have been evaluated for metabolic stability, and several showed improved stability, while maintaining biological activity.
ContributorsSchmierer, Margaret (Author) / Hecht, Sidney M. (Thesis advisor) / Allen, James (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
153946-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 DBPAs from B. burgdorferi and PBr DBPA from B. garinii) are studied to determine why each strain has a different affinity for GAGs. These three strains have similar topologies consisting of five α-helices held together by a hydrophobic core as well as two long flexible segments: a linker between helices one and two and a C-terminal tail. This structural arrangement facilitates the formation of a basic pocket below the flexible linker which is the primary GAG-binding epitope. However, this GAG-binding site can be occluded by the flexible linker, which makes the linker a negative regulator of GAG-binding. ITC and NMR titrations provide KD values that show PBr DBPA binds GAGs with higher affinity than B31 and N40 DBPAs, while N40 binds with the lowest affinity of the three. Work in this thesis demonstrates that much of the discrepancies seen in GAG affinities of the three DBPAs can be explained by the amino acid composition and conformation of the linker. Mutagenesis studies show that B31 DBPA overcomes the pocket obstruction with the BXBB motif in its linker while PBr DBPA has a retracted linker that exposes the basic pocket as well as a secondary GAG-binding site. N40 DBPA, however, does not have any evolutionary modifications to its structure to enhance GAG binding which explains its lower affinity for GAGs. GMSA and ELISA assays, along with NMR PRE experiments, confirm that structural changes in the linker do affect GAG-binding and, as a result, the linker is responsible for regulating GAG affinity.
ContributorsMorgan, Ashli M (Author) / Wang, Xu (Thesis advisor) / Allen, James (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015
154458-Thumbnail Image.png
Description
For reading DNA bases more accurately, a series of nitrogen-containing aromatic heterocycles have been designed and synthesized as candidates of universal reader to interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction and eventually is used to read DNA by recognition tunneling. These recognition molecules include 6-mercapto-1H-benzo[d]imidazole-2-carboxamide, 5-(2-mercaptoethyl)-1H-imidazole-2-carboxamide,

For reading DNA bases more accurately, a series of nitrogen-containing aromatic heterocycles have been designed and synthesized as candidates of universal reader to interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction and eventually is used to read DNA by recognition tunneling. These recognition molecules include 6-mercapto-1H-benzo[d]imidazole-2-carboxamide, 5-(2-mercaptoethyl)-1H-imidazole-2-carboxamide, 5-(2-mercaptoethyl)-4H-1,2,4-traizole-3-carboxamide and 1-(2-mercaptoethyl)-1H-pyrrole-3-carboxamide. Their formation of hydrogen bonding complexes with nucleobases was studied and association constants were measured by proton NMR titration experiments in deuterated chloroform at room temperature. To do so, the mercaptoethyl chain or thiol group of these reading molecules was replaced or protected with the more lipophilic group to increase the solubility of these candidates in CDCl3. The 3' and 5' hydroxyl groups of deoxyadenosine (dA), deoxyguanosine (dG), deoxycytidine (dC) and thymidine (dT) were protected with tert-butyldimethylsilyl (TBDMS) to eliminate hydrogen bonding competition from the hydroxyl protons with these candidates as well as to increase the solubility of the nucleosides in CDCl3 for NMR titration experiment. Benzimidazole and imidazole containing readers exhibited the strongest H-bonding affinity towards DNA bases where pyrrole containing reader showed the weakest affinity. In all cases, dG revealed the strongest affinity towards the readers while dA showed the least.

The molecular complex formation in aqueous solution was studied by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry. The formation of both 1:1 and 2:1 complexes between one or two reading molecules and a DNA nucleotide were observed by ESI mass. A series of amino acids and carbohydrates were also examined by mass spectrometry to show the formation of non-covalent complexes with imidazole reader in aqueous solution. The experimental results were compared by calculating energies of ground state conformers of individual molecules and their complexes using computer modeling study by DFT calculations. These studies give insights into the molecular interactions that happen in a nanogap during recognition tunneling experiments.
ContributorsBiswas, Sovan (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Borges, Chad (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016