Matching Items (38)
Filtering by

Clear all filters

149856-Thumbnail Image.png
Description
Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped

Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped in ~1.67 superhelical turns. Although the nucleosomes are stable protein-DNA complexes, they undergo spontaneous conformational changes that occur in an asynchronous fashion. This conformational dynamics, defined by the "site-exposure" model, involves the DNA unwrapping from the protein core and exposing itself transiently before wrapping back. Physiologically, this allows regulatory proteins to bind to their target DNA sites during cellular processes like replication, DNA repair and transcription. Traditional biochemical assays have stablished the equilibrium constants for the accessibility to various sites along the length of the nucleosomal DNA, from its end to the middle of the dyad axis. Using fluorescence correlation spectroscopy (FCS), we have established the position dependent rewrapping rates for nucleosomes. We have also used Monte Carlo simulation methods to analyze the applicability of FRET fluctuation spectroscopy towards conformational dynamics, specifically motivated by nucleosome dynamics. Another important conformational change that is involved in cellular processes is the disassembly of nucleosome into its constituent particles. The exact pathway adopted by nucleosomes is still not clear. We used dual color fluorescence correlation spectroscopy to study the intermediates during nucleosome disassembly induced by changing ionic strength. Studying the nature of nucleosome conformational change and the kinetics is very important in understanding gene expression. The results from this thesis give a quantitative description to the basic unit of the chromatin.
ContributorsGurunathan, Kaushik (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Woodbury, Neal (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
150257-Thumbnail Image.png
Description
Bioanalytes such as protein, cells, and viruses provide vital information but are inherently challenging to measure with selective and sensitive detection. Gradient separation technologies can provide solutions to these challenges by enabling the selective isolation and pre-concentration of bioanalytes for improved detection and monitoring. Some fundamental aspects of two of

Bioanalytes such as protein, cells, and viruses provide vital information but are inherently challenging to measure with selective and sensitive detection. Gradient separation technologies can provide solutions to these challenges by enabling the selective isolation and pre-concentration of bioanalytes for improved detection and monitoring. Some fundamental aspects of two of these techniques, isoelectric focusing and dielectrophoresis, are examined and novel developments are presented. A reproducible and automatable method for coupling capillary isoelectric focusing (cIEF) and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) based on syringe pump mobilization is found. Results show high resolution is maintained during mobilization and &beta-lactoglobulin; protein isoforms differing by two amino acids are resolved. Subsequently, the instrumental advantages of this approach are utilized to clarify the microheterogeneity of serum amyloid P component. Comprehensive, quantitative results support a relatively uniform glycoprotein model, contrary to inconsistent and equivocal observations in several gel isoelectric focusing studies. Fundamental studies of MALDI-MS on novel superhydrophobic substrates yield unique insights towards an optimal interface between cIEF and MALDI-MS. Finally, the fundamentals of isoelectric focusing in an open drop are explored. Findings suggest this could be a robust sample preparation technique for droplet-based microfluidic systems. Fundamental advancements in dielectrophoresis are also presented. Microfluidic channels for dielectrophoretic mobility characterization are designed which enable particle standardization, new insights to be deduced, and future devices to be intelligently designed. Dielectrophoretic mobilities are obtained for 1 µm polystyrene particles and red blood cells under select conditions. Employing velocimetry techniques allows models of particle motion to be improved which in turn improves the experimental methodology. Together this work contributes a quantitative framework which improves dielectrophoretic particle separation and analysis.
ContributorsWeiss, Noah Graham (Author) / Hayes, Mark A. (Thesis advisor) / Garcia, Antonio (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2011
152366-Thumbnail Image.png
Description
Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles

Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles were then subsequently attached to a glassy carbon electrode (GCE) in order to explore their electrochemical properties with regard to hydrogen insertion in 1 M sodium hydroxide. The particles were found to be in the size range 2.5 to 4 nm with good size dispersion. The ATP capping ligand allowed the particles to be air-stable and re-dissolved without agglomeration. It was found that the NPs could be firmly attached to the working electrode via cycling the voltage repeatedly in a NP/phosphate solution. Further electrochemical experiments were conducted to investigate the adsorption and absorption of hydrogen in the NPs in 1 M sodium hydroxide. Results for cyclic voltammetry experiments were consistent with those for nanostructured and thin-film palladium in basic solution. Absorbed hydrogen content was analyzed as a function of potential. The maximum hydrogen:Pd ratio was found to be ~0.7, close the theoretical maximum value for β phase palladium hydride.
ContributorsLamb, Timothy (Author) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeffery (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013
151314-Thumbnail Image.png
Description
Complex samples, such as those from biological sources, contain valuable information indicative of the state of human health. These samples, though incredibly valuable, are difficult to analyze. Separation science is often used as the first step when studying these samples. Electrophoretic exclusion is a novel separations technique that differentiates species

Complex samples, such as those from biological sources, contain valuable information indicative of the state of human health. These samples, though incredibly valuable, are difficult to analyze. Separation science is often used as the first step when studying these samples. Electrophoretic exclusion is a novel separations technique that differentiates species in bulk solution. Due to its ability to isolate species in bulk solution, it is uniquely suited to array-based separations for complex sample analysis. This work provides proof of principle experimental results and resolving capabilities of the novel technique. Electrophoretic exclusion is demonstrated at a single interface on both benchtop and microscale device designs. The benchtop instrument recorded absorbance measurements in a 365 μL reservoir near a channel entrance. Results demonstrated the successful exclusion of a positively-charged dye, methyl violet, with various durations of applied potential (30 - 60 s). This was the first example of measuring absorbance at the exclusion location. A planar, hybrid glass/PDMS microscale device was also constructed. One set of experiments employed electrophoretic exclusion to isolate small dye molecules (rhodamine 123) in a 250 nL reservoir, while another set isolated particles (modified polystyrene microspheres). Separation of rhodamine 123 from carboxylate-modified polystyrene spheres was also shown. These microscale results demonstrated the first example of the direct observation of exclusion behavior. Furthermore, these results showed that electrophoretic exclusion can be applicable to a wide range of analytes. The theoretical resolving capabilities of electrophoretic exclusion were also developed. Theory indicates that species with electrophoretic mobilities as similar as 10-9 cm2/Vs can be separated using electrophoretic exclusion. These results are comparable to those of capillary electrophoresis, but on a very different format. This format, capable of isolating species in bulk solution, coupled with the resolving capabilities, makes the technique ideal for use in a separations-based array.
ContributorsKenyon, Stacy Marie (Author) / Hayes, Mark A. (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
152402-Thumbnail Image.png
Description
This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells

This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells (PBMC) and highly metastatic mammalian breast cancer cells, MDA-MB-231. The advantage of this approach is the ease of integration of iDEP structures in microfliudic channels using soft lithography, the use of DC electric fields, the addressability of the single cell traps for downstream analysis and the straightforward multiplexing for single cell trapping. These microfluidic devices are targeted for capturing of single cells based on their DEP behavior. The numerical simulations point out the trapping regions in which single cell DEP trapping occurs. This work also demonstrates the cell conductivity values of different cell types, calculated using the single-shell model. Low conductivity buffers are used for trapping experiments. These low conductivity buffers help reduce the Joule heating. Viability of the cells in the buffer system was studied in detail with a population size of approximately 100 cells for each study. The work also demonstrates the development of the parallelized single cell trap device with optimized traps. This device is also capable of being coupled detection of target protein using MALDI-MS.
ContributorsBhattacharya, Sanchari (Author) / Ros, Alexandra (Committee member) / Ros, Robert (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
150925-Thumbnail Image.png
Description
Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is critical to control the electroosmotic flow for electrophoretic and dielectrophoretic manipulations. Therefore, surface modification of PDMS is essential to make

Polydimethyl siloxane is a commonly used fabrication material for microfluidic devices. However, its hydrophobic nature and protein adsorption on the surface restricts its use for microfluidic applications. Also, it is critical to control the electroosmotic flow for electrophoretic and dielectrophoretic manipulations. Therefore, surface modification of PDMS is essential to make it well suited for bioanalytical applications. In this project, the role of polyethylene oxide copolymers F108 and PLL-PEG has been investigated to modify the surface properties of PDMS using physisorption method. Measuring electroosmotic flow and adsorption studies tested the quality and the long-term stability of the modified PDMS surface. Static and dynamic coating strategies were used to modify the PDMS surface. In static coating, the PDMS surface was incubated with the coating agent prior to the measurements. For dynamic coating, the coating agent was always present in the solution throughout the experiment. F108 and PLL-PEG were equally effective to prevent the protein adsorption under both strategies. However, dynamic coating was more time saving. Furthermore, effective reduction of EOF was observed with F108 coating agent under dynamic conditions and with PLL-PEG coating agent under static conditions. Moreover, PLL-PEG dynamic coatings exhibited reversal of EOF. These important findings could be used to manipulate EOF and suggest optimal coating agent and strategies for PDMS surface treatment by the physisorption method.
ContributorsManchanda, Shikha (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2012
148435-Thumbnail Image.png
Description

Though schizophrenia was categorized as a mental illness over 100 years ago, there is a plethora of knowledge that continues to perplex the scientific and medical community alike. This tragic mental disorder affects approximately 1% of the general population, and many of these individuals are homeless if left untreated. Each

Though schizophrenia was categorized as a mental illness over 100 years ago, there is a plethora of knowledge that continues to perplex the scientific and medical community alike. This tragic mental disorder affects approximately 1% of the general population, and many of these individuals are homeless if left untreated. Each schizophrenia patient has a different set of symptoms, so all of these patients experience a variety of positive and negative symptoms. Negative symptoms are called so as they are in absence, and some examples include apathy, anhedonia, lack of motivation, reduced social drive, and reduced cognitive functioning. Positive behavior, on the other hand, is a change in behavior or thoughts such as visual or auditory hallucinations, delusions, confused thoughts, disorganized speech, and trouble concentrating. Because schizophrenia patients do not share the exact same set of symptoms, research in schizophrenia requires a tremendous amount of medical resources. Over the last few years, new studies have started in the field of schizophrenia involving proteomics, or the study of proteins and their function. This new frontier gives doctors and scientists alike a new opportunity to improve the quality of life of schizophrenia patients by providing a potential method through which patients would receive individualized treatment based on their specific symptoms.

ContributorsPeterson, Rozabel (Author) / Brian, Jennifer (Thesis director) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131058-Thumbnail Image.png
Description
Tempe Town Lake is the site of fifteen years’ worth of chemical data collection by ASU researchers. In 2018 the dataSONDE, an instrument capable of measuring different water quality parameters every thirty minutes for a month at a time was installed in the lake. The SONDE has the potential to

Tempe Town Lake is the site of fifteen years’ worth of chemical data collection by ASU researchers. In 2018 the dataSONDE, an instrument capable of measuring different water quality parameters every thirty minutes for a month at a time was installed in the lake. The SONDE has the potential to completely reduce the need for sampling by hand. Before the SONDE becomes the sole means of gathering data, it is important to verify its accuracy. In this study, the measurements gathered by the SONDE (pH, dissolved oxygen, temperature, conductivity and colored dissolved organic matter) were compared to measurements gathered using the verified methods from the past fifteen years.
ContributorsSauer, Elinor Rayne (Author) / Hartnett, Hilairy (Thesis director) / Glaser, Donald (Committee member) / Shock, Everett (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131872-Thumbnail Image.png
Description
Enzyme Replacement Therapy (ERT) is a treatment often used for patients with disorders that affect the production of various enzymes within the body, such as Cystic Fibrosis and Fabry Disease. ERT involves the use of artificially-produced enzymes, which can be derived from humans, pigs, and bacteria. Generally, enzymes derived from

Enzyme Replacement Therapy (ERT) is a treatment often used for patients with disorders that affect the production of various enzymes within the body, such as Cystic Fibrosis and Fabry Disease. ERT involves the use of artificially-produced enzymes, which can be derived from humans, pigs, and bacteria. Generally, enzymes derived from porcine and bacterial sources are much less expensive and more accessible than those derived from a human source. This, and the ethical implications that porcine enzymes carry, make the decision of choosing treatment simple to some and complex to others. Ethically, human-derived enzymes are often considered more ethical, while not conflicting with religious beliefs and practices as porcine-derived enzymes do.
In order to further compare porcine and human-derived enzymes, a determination of the enzyme effectiveness was done via digestion simulation. The digestion for both the human and porcine-derived enzymes consisted of three steps: oral, gastric, and intestinal. After the digestion, the absorbance for each enzyme class as well as a dilution curve of the formula used was read and recorded. Using the standard dilution curve and the absorbance values for each unknown, the formula and thus enzyme concentration that was lost through the reaction was able to be calculated.
The effectiveness of both the human and porcine enzymes, determined by the percent of formula lost, was 18.2% and 19.7%, respectively, with an error of 0.6% from the spectrophotometer, and an error of about 10% from the scale used for measuring the enzymes. This error was likely due to the small mass required of the enzymes and can be prevented in the future by performing the experiment at a larger scale.
ContributorsBlevins, Brianna R (Author) / Martin, Thomas (Thesis director) / McILwraith, Heide (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133051-Thumbnail Image.png
Description
As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a

As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a growing infant by providing the necessary nutrients, growth hormones and antibodies to promote digestive health, growth, and a strong immune system. The Developmental Origins of Health and Disease Theory (DOHaD) is a theory that suggests a growing fetus and nursing child's nutrients and immune system are dependent on the mother's exposure to nutrients and toxins. Studies have shown a positive correlation between the length of nursing and a child's overall health through life. In addition, consuming an enriched diet after weaning builds a strong immunological and nutritional basis from which the child can grow. This leads to improvements in a child's overall health, which has beneficial long-term effects on morbidity and mortality. This project applied the theory to two Middle Horizon (AD500-1100) individuals from Akapana, Tiwanaku, in the Lake Titicaca Basin, Bolivia. Stable nitrogen and carbon isotope analysis was applied to first molar serial samples of these two individuals to determine weaning age and early childhood diet. Both individuals were male; one male died in adolescence between the age of 9-15 years, and the other died as an elderly adult around the age of 50-59 years. The results showed that the male who died in adulthood was provisioned with supplemental and post-weaning foods high in animal protein, and received breast milk until around 37 months of age. The adolescent male was weaned between 11-12 months and consumed a diet dominated by C4 plants \u2014 most likely maize \u2014 with much less protein. The correlation between prolonged access to breast milk and a healthier and more nutritious childhood diet and longevity are consistent with the theory discussed above.
ContributorsCampbell, Sibella Sweelin (Author) / Knudson, Kelly (Thesis director) / Marsteller, Sara (Committee member) / Greenwald, Alexandra (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12