Matching Items (33)
Filtering by

Clear all filters

152402-Thumbnail Image.png
Description
This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells

This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells (PBMC) and highly metastatic mammalian breast cancer cells, MDA-MB-231. The advantage of this approach is the ease of integration of iDEP structures in microfliudic channels using soft lithography, the use of DC electric fields, the addressability of the single cell traps for downstream analysis and the straightforward multiplexing for single cell trapping. These microfluidic devices are targeted for capturing of single cells based on their DEP behavior. The numerical simulations point out the trapping regions in which single cell DEP trapping occurs. This work also demonstrates the cell conductivity values of different cell types, calculated using the single-shell model. Low conductivity buffers are used for trapping experiments. These low conductivity buffers help reduce the Joule heating. Viability of the cells in the buffer system was studied in detail with a population size of approximately 100 cells for each study. The work also demonstrates the development of the parallelized single cell trap device with optimized traps. This device is also capable of being coupled detection of target protein using MALDI-MS.
ContributorsBhattacharya, Sanchari (Author) / Ros, Alexandra (Committee member) / Ros, Robert (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152636-Thumbnail Image.png
Description
Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While

Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While microfluidic devices require only pL-nL sample volumes, they offer several advantages such as speed, efficiency, and high throughput. This work elucidates the capability to manipulate proteins in a rapid and reliable manner with a novel migration technique, namely dielectrophoresis (DEP). Since protein analysis can often be achieved through a combination of orthogonal techniques, adding DEP as a gradient technique to the portfolio of protein manipulation methods can extend and improve combinatorial approaches. To this aim, microfluidic devices tailored with integrated insulating obstacles were fabricated to create inhomogeneous electric fields evoking insulator-based DEP (iDEP). A main focus of this work was the development of pre-concentration devices where topological micropost arrays are fabricated using standard photo- and soft lithographic techniques. With these devices, positive DEP-driven streaming of proteins was demonstrated for the first time using immunoglobulin G (IgG) and bovine serum albumin. Experimentally observed iDEP concentrations of both proteins were in excellent agreement with positive DEP concentration profiles obtained by numerical simulations. Moreover, the micropost iDEP devices were improved by introducing nano-constrictions with focused ion beam milling with which numerical simulations suggested enhancement of the DEP effect, leading to a 12-fold increase in concentration of IgG. Additionally, concentration of β-galactosidase was observed, which seems to occur due to an interplay of negative DEP, electroosmosis, electrokinesis, diffusion, and ion concentration polarization. A detailed study was performed to investigate factors influencing protein DEP under DC conditions, including electroosmosis, electrophoresis, and Joule heating. Specifically, temperature rise within the iDEP device due to Joule heating was measured experimentally with spatial and temporal resolution by employing the thermosensitive dye Rhodamine B. Unlike DNA and cells, protein DEP behavior is not well understood to date. Therefore, this detailed study of protein DEP provides novel information to eventually optimize this protein migration method for pre-concentration, separation, and fractionation.
ContributorsNakano, Asuka (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Levitus, Marcia (Committee member) / Arizona State University (Publisher)
Created2014
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152823-Thumbnail Image.png
Description
Natural hydrogenases catalyze the reduction of protons to molecular hydrogen reversibly under mild conditions; these enzymes have an unusual active site architecture, in which a diiron site is connected to a cubane type [4Fe-4S] cluster. Due to the relevance of this reaction to energy production, and in particular to sustainable

Natural hydrogenases catalyze the reduction of protons to molecular hydrogen reversibly under mild conditions; these enzymes have an unusual active site architecture, in which a diiron site is connected to a cubane type [4Fe-4S] cluster. Due to the relevance of this reaction to energy production, and in particular to sustainable fuel production, there have been substantial amount of research focused on developing biomimetic organometallic models. However, most of these organometallic complexes cannot revisit the structural and functional fine-tuning provided by the protein matrix as seen in the natural enzyme. The goal of this thesis is to build a protein based functional mimic of [Fe-Fe] hydrogenases. I used a 'retrosynthetic' approach that separates out two functional aspects of the natural enzyme. First, I built an artificial electron transfer domain by engineering two [4Fe-4S] cluster binding sites into an existing protein, DSD, which is a de novo designed domain swapped dimer. The resulting protein, DSD-bis[4Fe-4S], contains two clusters at a distance of 36 Å . I then varied distance between two clusters using vertical translation along the axis of the coiled coil; the resulting protein demonstrates efficient electron transfer to/from redox sites. Second, I built simple, functional artificial hydrogenases by using an artificial amino acid comprising a 1,3 dithiol moiety to anchor a biomimetic [Fe-Fe] active site within the protein scaffold Correct incorporation of the cluster into a model helical peptide was verified by UV-Vis, FTIR, ESI-MS and CD spectroscopy. This synthetic strategy is extended to the de novo design of more complex protein architectures, four-helix bundles that host the di-iron cluster within the hydrophobic core. In a separate approach, I developed a generalizable strategy to introduce organometallic catalytic sites into a protein scaffold. I introduced a biomimetic organometallic complex for proton reduction by covalent conjugation to biotin. The streptavidin-bound complex is significantly more efficient in photocatalytic hydrogen production than the catalyst alone. With these artificial proteins, it will be possible to explore the effect of second sphere interactions on the activity of the diiron center, and to include in the design properties such as compatibility with conductive materials and electrodes.
ContributorsRoy, Anindya (Author) / Ghirlanda, Giovanna (Thesis advisor) / Yan, Hao (Committee member) / Gust, Devens (Committee member) / Arizona State University (Publisher)
Created2014
153337-Thumbnail Image.png
Description
Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry,

Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry, cell biology and material science. Functionalizing the AFM tip made it possible to detect molecules and their interaction using recognition imaging at single molecule level. Also the unbinding force of two molecules can be investigated based on AFM based single molecule force spectroscopy.

In the first study, a new chemical approach to functionalize the AFM tip in a simple and user-friendly way has been described. Copper-free click chemistry and a vinyl sulfone PEG linker have been utilized during the process. Using this technique, human thrombin and integrin were detected in separate experiments. Then a novel tri-arm linker with two recognition molecules on it was designed and two proteins (human thrombin and integrin) were detected simultaneously in the same experiment using recognition imaging. This technique can be applied to understand many multivalent interactions taking place in nature. Using the same tri-arm linker functionalized with two biotin molecules, the interaction of streptavidin with mono-biotin and bis-biotin ligands were investigated. The thermal stability of streptavidin-biotin complex was also studied using SDS-PAGE analysis.

In the final study, structure of native chromatin extracted from normal and cancer cell lines were analyzed using AFM imaging and agarose gel electrophoresis. Different salt fractions were used to extract chromatin region depending on their solubility. Mnase sensitivity of the chromatin sample was used to understand the open and closed structures of chromatin from different sources. The amount of chromatin in different salt fractions could act as an indicator of amount of open and condensed chromatin in normal and cancer cells. Eventually this ratio of closed and open structure of chromatin could be an indicator of tumorigenic nature of particular cell lines.
ContributorsSenapati, Subhadip (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015
152988-Thumbnail Image.png
Description
A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere

A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere with about 20 TW of the total product used by humans. Additionally, our society uses approximately 20 more TW of energy from ancient photosynthetic products i.e. fossil fuels. In order to mitigate climate problems, the carbon dioxide must be removed from the human energy usage by replacement or recycling as an energy carrier. Proposals have been made to process biomass into biofuels; this work demonstrates that current efficiencies of natural photosynthesis are inadequate for this purpose, the effects of fossil fuel replacement with biofuels is ecologically irresponsible, and new technologies are required to operate at sufficient efficiencies to utilize artificial solar-to-fuels systems. Herein a hybrid bioderived self-assembling hydrogen-evolving nanoparticle consisting of photosystem I (PSI) and platinum nanoclusters is demonstrated to operate with an overall efficiency of 6%, which exceeds that of land plants by more than an order of magnitude. The system was limited by the rate of electron donation to photooxidized PSI. Further work investigated the interactions of natural donor acceptor pairs of cytochrome c6 and PSI for the thermophilic cyanobacteria Thermosynechococcus elogantus BP1 and the red alga Galderia sulphuraria. The cyanobacterial system is typified by collisional control while the algal system demonstrates a population of prebound PSI-cytochrome c6 complexes with faster electron transfer rates. Combining the stability of cyanobacterial PSI and kinetics of the algal PSI:cytochrome would result in more efficient solar-to-fuel conversion. A second priority is the replacement of platinum with chemically abundant catalysts. In this work, protein scaffolds are employed using host-guest strategies to increase the stability of proton reduction catalysts and enhance the turnover number without the oxygen sensitivity of hydrogenases. Finally, design of unnatural electron transfer proteins are explored and may introduce a bioorthogonal method of introducing alternative electron transfer pathways in vitro or in vivo in the case of engineered photosynthetic organisms.
ContributorsVaughn, Michael David (Author) / Moore, Thomas (Thesis advisor) / Fromme, Petra (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153026-Thumbnail Image.png
Description
The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics

The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics of the assembly process of cotton Rca. We present FCS data for Rca in the presence of Mg*ATPgS and Mg*ADP and for the D173N Walker B motif mutant in the presence of Mg*ATP. Our data are consistent with promotion and stabilization of hexamers by Mg*ATPgS and Mg*ATP, whereas Mg*ADP facilitates continuous assembly. We find that in the presence of Mg·ADP, Rca self-associates in a step-wise fashion to form oligomeric and higher order forms, with a strong size dependence on subunit concentration. The monomer is the dominant species below 0.5 micromolar, whereas the hexamer appears to be most populated in the 10-30 micromolar range. Large assemblies containing on the order of 24 subunits become dominant above 40 micromolar, with continued assembly at even higher concentrations. Our data are consistent with a highly dynamic exchange of subunits among oligomeric species of diverse sizes. The most likely ADP-mediated assembly mechanism seems to involve the formation of spiral supra-molecular structures that grow along the helical axis by the step-wise addition of dimeric units. To examine the effect of Mg·ATP on oligomerization, we have generated the D173N mutant of Rca, which binds but does not hydrolyze ATP. In range of 8 and 70 micromolar, 60-80% of Rca is predicted to form hexamers in the presence of Mg*ATP compared to just 30-40% with Mg*ADP. We see a clear trend at which hexamerization occurs at high ATP:ADP ratios and in addition, at increasing concentrations of free magnesium ions to 5 milimolar that results in formation of six subunits. We present an assembly model where Mg*ATP promotes and stabilizes hexamerization at low micromolar Rca concentrations relative to Mg*ADP, and suggest that this results from closed ring hexamer formation in Mg*ATP and open hexameric spiral formation in Mg*ADP .
ContributorsKuriata, Agnieszka (Author) / Wachter, Rebekka (Thesis advisor) / Redding, Kevin (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
153167-Thumbnail Image.png
Description
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing

The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain (residues 684-705) of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high-resolution X-ray structures of some segments of the MPR were solved in the past, they represent the pre-fusion and post-fusion conformations, most of which could not react with the broadly neutralizing antibodies 2F5 and 4E10. Structural information on the TM domain of gp41 is scant and at low resolution.

This thesis describes the structural studies of MPR-TM (residues 649-705) of HIV-1 gp41 by X-ray crystallography. MPR-TM was fused with different fusion proteins to improve the membrane protein overexpression. The expression level of MPR-TM was improved by fusion to the C-terminus of the Mistic protein, yielding ∼1 mg of pure MPR-TM protein per liter cell culture. The fusion partner Mistic was removed for final crystallization. The isolated MPR-TM protein was biophysically characterized and is a monodisperse candidate for crystallization. However, no crystal with diffraction quality was obtained even after extensive crystallization screens. A novel construct was designed to overexpress MPR-TM as a maltose binding protein (MBP) fusion. About 60 mg of MBP/MPR-TM recombinant protein was obtained from 1 liter of cell culture. Crystals of MBP/MPR-TM recombinant protein could not be obtained when MBP and MPR-TM were separated by a 42 amino acid (aa)-long linker but were obtained after changing the linker to three alanine residues. The crystals diffracted to 2.5 Å after crystallization optimization. Further analysis of the diffraction data indicated that the crystals are twinned. The final structure demonstrated that MBP crystallized as a dimer of trimers, but the electron density did not extend beyond the linker region. We determined by SDS-PAGE and MALDI-TOF MS that the crystals contained MBP only. The MPR-TM of gp41 might be cleaved during or after the process of crystallization. Comparison of the MBP trimer reported here with published trimeric MBP fusion structures indicated that MBP might form such a trimeric conformation under the effect of MPR-TM.
ContributorsGong, Zhen (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Thesis advisor) / Ros, Alexandra (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015
150257-Thumbnail Image.png
Description
Bioanalytes such as protein, cells, and viruses provide vital information but are inherently challenging to measure with selective and sensitive detection. Gradient separation technologies can provide solutions to these challenges by enabling the selective isolation and pre-concentration of bioanalytes for improved detection and monitoring. Some fundamental aspects of two of

Bioanalytes such as protein, cells, and viruses provide vital information but are inherently challenging to measure with selective and sensitive detection. Gradient separation technologies can provide solutions to these challenges by enabling the selective isolation and pre-concentration of bioanalytes for improved detection and monitoring. Some fundamental aspects of two of these techniques, isoelectric focusing and dielectrophoresis, are examined and novel developments are presented. A reproducible and automatable method for coupling capillary isoelectric focusing (cIEF) and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) based on syringe pump mobilization is found. Results show high resolution is maintained during mobilization and &beta-lactoglobulin; protein isoforms differing by two amino acids are resolved. Subsequently, the instrumental advantages of this approach are utilized to clarify the microheterogeneity of serum amyloid P component. Comprehensive, quantitative results support a relatively uniform glycoprotein model, contrary to inconsistent and equivocal observations in several gel isoelectric focusing studies. Fundamental studies of MALDI-MS on novel superhydrophobic substrates yield unique insights towards an optimal interface between cIEF and MALDI-MS. Finally, the fundamentals of isoelectric focusing in an open drop are explored. Findings suggest this could be a robust sample preparation technique for droplet-based microfluidic systems. Fundamental advancements in dielectrophoresis are also presented. Microfluidic channels for dielectrophoretic mobility characterization are designed which enable particle standardization, new insights to be deduced, and future devices to be intelligently designed. Dielectrophoretic mobilities are obtained for 1 µm polystyrene particles and red blood cells under select conditions. Employing velocimetry techniques allows models of particle motion to be improved which in turn improves the experimental methodology. Together this work contributes a quantitative framework which improves dielectrophoretic particle separation and analysis.
ContributorsWeiss, Noah Graham (Author) / Hayes, Mark A. (Thesis advisor) / Garcia, Antonio (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2011