Matching Items (5)
Filtering by

Clear all filters

151604-Thumbnail Image.png
Description
Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated

Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated in this four-treatment crossover trial. All subjects participated in four trials, each taking place over three days. On the evening of the first day, subjects were fitted with a continuous glucose monitor (CGM). On the second day, subjects were fitted with an ambulatory blood pressure monitor (ABP) and underwent one of the following four conditions in a randomized order: 1) 30-min: 30 minutes of continuous exercise at 60 - 70% VO2peak; 2) Mod 2-min: twenty-one 2-min bouts of walking at 3 mph performed once every 20 minutes; 3) HI 2-min: eight 2-min bouts of walking at maximal incline performed once every hour; 4) Control: a no exercise control condition. On the morning of the third day, the CGM and ABP devices were removed. All meals were standardized during the study visits. Linear mixed models were used to compare mean differences in glucose and blood pressure regulation between the four trials. Results: Glucose concentrations were significantly lower following the 30-min (91.1 ± 14.9 mg/dl), Mod 2-min (93.7 ± 19.8 mg/dl) and HI 2-min (96.1 ± 16.4 mg/dl) trials as compared to the Control (101.1 ± 20 mg/dl) (P < 0.001 for all three comparisons). The 30-min trial was superior to the Mod 2-min, which was superior to the HI 2-min trial in lowering blood glucose levels (P < 0.001 and P = 0.003 respectively). Only the 30-min trial was effective in lowering systolic ABP (124 ± 12 mmHg) as compared to the Control trial (127 ± 14 mmHg; P < 0.001) for up to 11 hours post exercise. Conclusion: Performing frequent short (i.e., 2 minutes) bouts of moderate or high intensity exercise may be a viable alternative to traditional continuous exercise in improving glucose regulation. However, 2-min bouts of exercise are not effective in reducing ambulatory blood pressure in healthy adults.
ContributorsBhammar, Dharini Mukeshkumar (Author) / Gaesser, Glenn A (Thesis advisor) / Shaibi, Gabriel (Committee member) / Buman, Matthew (Committee member) / Swan, Pamela (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2013
149990-Thumbnail Image.png
Description
The effects of a long-term combat deployment on a soldier's physical fitness are not well understood. In active duty soldiers, combat deployment reduced physical fitness compared to pre-deployment status, but no similar research has been performed on Army National Guard soldiers. This study is the first to identify physical fitness

The effects of a long-term combat deployment on a soldier's physical fitness are not well understood. In active duty soldiers, combat deployment reduced physical fitness compared to pre-deployment status, but no similar research has been performed on Army National Guard soldiers. This study is the first to identify physical fitness changes in Arizona National Guard (AZNG) soldiers following deployment to a combat zone and to assess the relationships between physical fitness and non-combat injuries and illness (NCII). Sixty soldiers from the Arizona National Guard (AZNG) completed a battery of physical fitness tests prior to deployment and within 1-7 days of returning from a 12-month deployment to Iraq. Pre and post-deployment measures assessed body composition (Bod Pod), muscular strength (1RM bench press, back-squat), muscular endurance (push-up, sit-up), power (Wingate cycle test), cardiorespiratory fitness (treadmill run to VO2 peak), and flexibility (sit-and-reach, trunk extension, shoulder elevation). Post deployment, medical records were reviewed by a blinded researcher and inventoried for NCII that occurred during deployment. Data were analyzed for changes between pre and post-deployment physical fitness. Relationships between fitness and utilization of medical resources for NCII were then determined. Significant declines were noted in mean cardiorespiratory fitness (-10.8%) and trunk flexibility (-6.7%). Significant improvements were seen in mean level of fat mass (-11.1%), relative strength (bench press, 10.2%, back-squat 14.2%) and muscular endurance (push-up 16.4%, sit-up 11.0%). Significant (p < 0.05) negative correlations were detected between percentage change in fat mass and gastrointestinal visits (r = -0.37); sit-and-reach and lower extremity visits (r= -0.33); shoulder elevation and upper extremity visits (r= -0.36); and cardiorespiratory fitness and back visits (r= -0.31); as well as behavioral health visits (r= -0.28). Cardiorespiratory fitness changes were grouped into tertiles. Those who lost the greatest fitness had significantly greater number of NCII visits (8.0 v 3.1 v 2.6, p = .03). These data indicate a relationship between the decline in cardiorespiratory fitness and an overall increase in utilization of medical resources. The results may provide incentive to military leaders to ensure that soldiers maintain their cardiorespiratory fitness throughout the extent of their deployment.
ContributorsWarr, Bradley (Author) / Swan, Pamela (Thesis advisor) / Lee, Chong (Committee member) / Campbell, Kathryn (Committee member) / Erickson, Steven (Committee member) / Alvar, Brent (Committee member) / Arizona State University (Publisher)
Created2011
150821-Thumbnail Image.png
Description
Heart failure is a major worldwide health concern and is the leading cause of hospitalization among elderly Americans. Approximately 50% of those diagnosed with heart failure have heart failure with preserved ejection fraction (HFPEF). HFPEF presents a therapeutic dilemma because pharmacological strategies that are effective for the treatment of heart

Heart failure is a major worldwide health concern and is the leading cause of hospitalization among elderly Americans. Approximately 50% of those diagnosed with heart failure have heart failure with preserved ejection fraction (HFPEF). HFPEF presents a therapeutic dilemma because pharmacological strategies that are effective for the treatment of heart failure and reduced ejection fraction have failed to show benefit in HFPEF. Long term moderate intensity exercise programs have been shown to improve diastolic function in patients HFPEF. High intensity interval training (HIIT) has been shown to improve diastolic function in patients with heart failure and reduced ejection fraction. However, the effects of high intensity interval training in patients with HFPEF are unknown. Fourteen patients with HFPEF were randomized to either: (1) a novel program of high-intensity aerobic interval training (n = 8), or (2) a commonly prescribed program of moderate-intensity (MOD) aerobic exercise training (n = 6). Before and after four weeks of exercise training, patients underwent a treadmill graded exercise test for the determination of peak oxygen uptake (VO2peak), a brachial artery reactivity test for assessment of endothelium-dependent flow-mediated dilation (BAFMD), aortic pulse wave velocity assessment as an index of vascular stiffness and two-dimensional echocardiography for assessment of left ventricular diastolic and systolic function. I hypothesized that (1) high-intensity aerobic interval training would result in superior improvements in FMD, aortic pulse wave velocity, VO2peak, diastolic function and, (2) changes in these parameters would be correlated with changes in VO2peak. The principal findings of the study were that a one month long high intensity interval training program resulted in significant improvements in diastolic function as measured by two-dimensional echocardiography [pre diastolic dysfunction (DD) grade - 2.13 + 0.4 vs. post DD grade - 1.25 + 0.7, p = 0.03]. The left atrial volume index was reduced in the HIIT group compared to MOD ( - 4.4 + 6.2 ml/m2 vs. 5.8 + 10.7 ml/m2, p = 0.02). Early mitral flow (E) improved in the HIIT group (pre - 0.93 + 0.2 m/s vs. post - 0.78 + 0.3 m/s, p = 0.03). A significant inverse correlation was observed between change in BAFMD and change in diastolic dysfunction grade (r = - 0.585, p = 0.028) when all the data were pooled. HIIT appears to be a time-efficient and safe strategy for improving diastolic function in patients with heart failure and preserved ejection fraction. These data may have implications for cardiovascular risk reduction in this population.
ContributorsAngadi, Siddhartha (Author) / Gaesser, Glenn A (Thesis advisor) / Mookadam, Farouk (Committee member) / Swan, Pamela (Committee member) / Vega-Lopez, Sonia (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2012
137824-Thumbnail Image.png
Description
This study was conducted as part of an underlying initiative to elucidate the mechanism of action of natural antibacterial clay minerals for application as therapeutic agents for difficult-to-treat infections such as methicillin-resistant Staphylococcus aureus (MRSA)-derived skin lesions and Buruli ulcer. The goal of this investigation was to determine whether exposure

This study was conducted as part of an underlying initiative to elucidate the mechanism of action of natural antibacterial clay minerals for application as therapeutic agents for difficult-to-treat infections such as methicillin-resistant Staphylococcus aureus (MRSA)-derived skin lesions and Buruli ulcer. The goal of this investigation was to determine whether exposure to the leachate of an antibacterial clay mineral, designated as CB, produced DNA double-strand breaks (DSBs) in Escherichia coli. A neutral comet assay for bacterial cells was adapted to assess DSB levels upon exposure to soluble antimicrobial compounds. Challenges involved with the adaptation process included comet visualization and data collection. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions comprised of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to CB resulted in significantly longer comet lengths compared to negative control exposures, suggesting that CB killing activity involves the induction of DNA DSBs. The results of this investigation further characterize the antimicrobial mechanisms associated with a particular clay mineral mixture. The adapted comet assay protocol described herein functions as an effective tool to assess double-strand fragmentation resulting from exposure to soluble antimicrobial compounds and to visually compare results from experimental and control reactions.
ContributorsSolanky, Dipesh (Author) / Haydel, Shelley (Thesis director) / Stout, Valerie (Committee member) / Adusumilli, Sarojini (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137847-Thumbnail Image.png
Description
Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.
ContributorsManning, Miles (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Preul, Mark (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12