Matching Items (71)
Filtering by

Clear all filters

148119-Thumbnail Image.png
Description

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from their solitarious phase to their gregarious phase where they congregate and begin marching and eventually swarming together. These swarms, often billions strong, can consume the vegetation of enormous swaths of land and can travel hundreds of kilometers in a single day producing a complex threat to food security. To better understand the biology of these important pests we explored the gut microbiome of the South American locust (Schistocerca cancellata). We hypothesized generally that the gut microbiome in this species would be critically important as has been shown in many other species. We extracted and homogenized entire guts from male S. cancellata, and then extracted gut microbiome genomic DNA. Genomic DNA was then confirmed on a gel. The initial extractions were of poor quality for sequencing, but subsequent extractions performed by collaborators during troubleshooting at Southern Illinois University Edwardsville proved more useful and were used for PCR. This resulted in the detections of the following bacterial genera in the gut of S. cancellata: Enterobacter, Enterococcus, Serratia, Pseudomonas, Actinobacter, and Weisella. With this data, we are able to speculate about the physiological roles that they hold within the locust gut generating hypotheses for further testing. Understanding the microbial composition of this species’ gut may help us better understand the locust in general in an effort to more sustainably manage them.

ContributorsGrief, Dustin (Author) / Overson, Rick (Thesis director) / Cease, Arianne (Committee member) / Peterson, Brittany (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147794-Thumbnail Image.png
Description

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against smallpox by variolation, vaccination’s predecessor and a well-established Chinese medical technique that was spread from east to west to Great Britain, remains largely understudied in modern scholarly literature. In the early 1700s, Lady Mary Wortley Montagu, credited with bringing smallpox variolation to Great Britain, wrote first about the practice in the Turkish city of Adrianople and describes variolation as a “useful invention,” yet laments that, unlike the Turkish women who variolate only those in their “small neighborhoods,” British doctors would be able to “destroy this [disease] swiftly” worldwide should they adopt variolation. Examined through the lens of Edward Said’s Orientalism, techno-Orientalism, and medical Orientalism and contextualized by a comparison to British attitudes toward nineteenth century vaccination, eighteenth century smallpox variolation’s introduction to Britain from the non-British “Orient” represents an instance of reversed Orientalism, in which a technologically deficient British “Occident” must “Orientalize” itself to import the superior medical technology of variolation into Britain. In a scramble to retain technological superiority over the Chinese Orient, Britain manufactures a sense of total difference between an imagined British version of variolation and a real, non-British version of variolation. This imagination of total difference is maintained through characterizations of the non-British variolation as ancient, unsafe, and practiced by illegitimate practitioners, while the imagined British variolation is characterized as safe, heroic, and practiced by legitimate British medical doctors. The Occident’s instance of medical technological inferiority brought about by the importation of variolation from the Orient, which I propose represents an eighteenth-century instance of what I call medical techno-Orientalism, represents an expression of British anxiety over a medical technologically superior Orient—anxieties which express themselves as retaliatory attacks on the Orient and variolation as it is practiced in the Orient—and as an expression of British desire to maintain medical technological superiority over the Orient.

ContributorsMalotky, Braeden M (Author) / Agruss, David (Thesis director) / Soares, Rebecca (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147900-Thumbnail Image.png
Description

The social determinants of health (SDOH) represent factors that impact the health and effectiveness/compliance of a treatment plan for a patient. The SDOH include such factors as economic stability, education, home and community context, access to healthcare, neighborhood and built environment, and personal behavior. The purpose of this study is

The social determinants of health (SDOH) represent factors that impact the health and effectiveness/compliance of a treatment plan for a patient. The SDOH include such factors as economic stability, education, home and community context, access to healthcare, neighborhood and built environment, and personal behavior. The purpose of this study is to determine the extent of collection and integration of SDOH into clinical practice, and the usefulness of this information in medical decision making. Following a thorough literature review, an online survey was deployed to physicians and administrators around the country, with the aim of answering the following questions: 1) Do provider practices collect information on a patient's social determinants of health? 2) If yes, how is that information being used, if at all? 3) If not, what is preventing them from doing so? 4) Do the answers to questions 1-3 differ based on the type of payment model (Fee-for-Service or Capitation) to which the practice is subject? The results of the study suggest that fee-for-service payment environments present less incentive to use a patient's SDOH in medical decision making.

ContributorsKarthik, Asha Rajam (Author) / Cortese, Denis (Thesis director) / Landman, Natalie (Committee member) / Department of Information Systems (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137704-Thumbnail Image.png
Description
Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to

Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to a cohort of dialysis patients in the Phoenix metro area and their fluid tolerance was measured with thoracic biolectrical impedance. BNP was used as a correlate to see if bioelectrical impedance was correlated with heart disease. The study found no correlation between BNP and bioelectrical impedance and thus was not an accurate diagnostic tool in a medical setting.
ContributorsBrown, Patrick Michael (Author) / Johnston, Carol (Thesis director) / Orchinik, Miles (Committee member) / Tingey, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
151868-Thumbnail Image.png
Description
Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB

Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB such as Geobacter and Shewanella, tremendous potential exists for MXCs as microbiological platforms for exploring novel ARB. This dissertation introduces approaches for selective enrichment and characterization of phototrophic, halophilic, and alkaliphilic ARB. An enrichment scheme based on manipulation of poised anode potential, light, and nutrient availability led to current generation that responded negatively to light. Analysis of phototrophically enriched communities suggested essential roles for green sulfur bacteria and halophilic ARB in electricity generation. Reconstruction of light-responsive current generation could be successfully achieved using cocultures of anode-respiring Geobacter and phototrophic Chlorobium isolated from the MXC enrichments. Experiments lacking exogenously supplied organic electron donors indicated that Geobacter could produce a measurable current from stored photosynthate in the dark. Community analysis of phototrophic enrichments also identified members of the novel genus Geoalkalibacter as potential ARB. Electrochemical characterization of two haloalkaliphilic, non-phototrophic Geoalkalibacter spp. showed that these bacteria were in fact capable of producing high current densities (4-8 A/m2) and using higher organic substrates under saline or alkaline conditions. The success of these selective enrichment approaches and community analyses in identifying and understanding novel ARB capabilities invites further use of MXCs as robust platforms for fundamental microbiological investigations.
ContributorsBadalamenti, Jonathan P (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Rittmann, Bruce E. (Committee member) / Torres, César I (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2013
152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
136077-Thumbnail Image.png
Description
Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a

Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a tool for the purification and characterization of these glycoproteins from patient specimens. Materials and Methods: To identify potential Coccidioides-binding lectins, lectin-based immunohistochemistry was performed using a panel of 21 lectins on lung tissue from human patients infected with Coccidioides. Enzyme-Linked Immunosorbent Assays (ELISAs) were used to confirm and test candidate Coccidioides-binding lectins for their ability to bind to proteins from antigen preparations of laboratory-grown Coccidioides. Inhibition IHC and ELISAs were used to confirm binding properties of these lectins. SDS-PAGE and mass spectrometry were performed on eluates from coccidioidal antigen preparations run through lectin-affinity chromatography columns to characterize and identify lectin-binding coccidioidal glycoproteins. Results: Two GlcNAc-binding lectins, GSLII and sWGA, bound specifically to spherules and endospores in infected human lung tissue, and not to adjacent lung tissue. The binding of these lectins to both Coccidioides proteins in lung tissue and to coccidioidal antigen preparations was confirmed to have lectin-like characteristics. SDS-PAGE analysis of eluates from lectin-affinity chromatography demonstrated that GSLII and sWGA bind to coccidioidal glycoproteins. Mass spectrometric identification of the top ten lectin affinity-purified glycoproteins demonstrated that GSLII and sWGA share affinity to a common set of coccidioidal glycoproteins. Conclusion: This is the first report of lectins that bind specifically to Coccidioides spherules and endospores in infected humans. These lectins may have the potential to serve as tools for a better method of detection and diagnosis of Valley Fever.
ContributorsChowdhury, Yasmynn (Author) / Lake, Douglas (Thesis director) / Grys, Thomas (Committee member) / Magee, Mitchell (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Objective: To explore the dimensions of the human animal bond and provide a community needs assessment to inform the community stake holders such as the Arizona Humane Society and Nina Mason Pulliam Charitable Trust Foundation how many animals are in need of veterinary services within the homeless population of Phoenix,

Objective: To explore the dimensions of the human animal bond and provide a community needs assessment to inform the community stake holders such as the Arizona Humane Society and Nina Mason Pulliam Charitable Trust Foundation how many animals are in need of veterinary services within the homeless population of Phoenix, Arizona. In addition to this, pets of the homeless individuals will be able to gain access to veterinary services for eight consecutive weeks. Background: Pets have an important impact on human mental, physical, social, and emotional health. It has been reported that about one third of the homeless population in Arizona has pets that are not able to gain access to veterinary care (Wang, 2015). Most homeless shelters will not allow people to access services with pets. As a consequence people will sleep out in the streets. Animals as Lifechangers and Lifesavers: Pets in the Redemption Narratives of Homeless People (Irvine, 2013) contains interviews of homeless people based on their life stories. A common theme among interviewees was that they felt they had a responsibility to their pets that served as a motivating purpose for giving up horrible personal habits because they had a sense of responsibility. Methods/Materials: Wandering Paws was launched in February 2015, but did not officially start as an eight-week study until March 2016. This pilot program serves the homeless populations' dogs and cats with veterinary care. The Arizona Humane Society was approached to acquire their services for this project including a veterinarian, a technician, and usage of their seventy-one foot mobile unit. Homeless individuals who wanted veterinary services were recruited and asked to fill out a twenty-three-question survey. Secondary data was procured from the Arizona Humane Society about the animal and services rendered for that pet. Results: Over the course of the first four weeks 22 surveys have been completed. 86% of the surveys completed indicate a strong bond between the owner and animal. The remaining 14% of the surveys completed indicate a weaker bond between the animal and owner. Conclusion/Implications: The research indicates a strong connection between most people and their animals. The veterinary services provided for the homeless population should be continued on a monthly basis as a wellness clinic in the future, as these services are in great demand.
ContributorsHowarth, Amber (Author) / DeNardo, Dale (Thesis director) / Thatcher, Craig (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05