Matching Items (3)
156337-Thumbnail Image.png
Description
Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to

Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to jus-

tify their underlying assumptions. To protect against unreliable estimations which

can adversely affect the decisions generated from applications dependent on fully-

realized models, techniques that are robust against misspecications are utilized while

still making use of incoming data for learning. Hence, new robust techniques are ap-

plied that (1) allow for the decision-maker to express a spectrum of pessimism against

model uncertainties while (2) still utilizing incoming data for learning. Two main ap-

plications are investigated with respect to these goals, the first being a percentile

optimization technique with respect to a multi-class queueing system for application

in hospital Emergency Departments. The second studies the use of robust forecasting

techniques in improving developing countries’ vaccine supply chains via (1) an inno-

vative outside of cold chain policy and (2) a district-managed approach to inventory

control. Both of these research application areas utilize data-driven approaches that

feature learning and pessimism-controlled robustness.
ContributorsBren, Austin (Author) / Saghafian, Soroush (Thesis advisor) / Mirchandani, Pitu (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2018
156575-Thumbnail Image.png
Description
Mathematical modeling and decision-making within the healthcare industry have given means to quantitatively evaluate the impact of decisions into diagnosis, screening, and treatment of diseases. In this work, we look into a specific, yet very important disease, the Alzheimer. In the United States, Alzheimer’s Disease (AD) is the 6th leading

Mathematical modeling and decision-making within the healthcare industry have given means to quantitatively evaluate the impact of decisions into diagnosis, screening, and treatment of diseases. In this work, we look into a specific, yet very important disease, the Alzheimer. In the United States, Alzheimer’s Disease (AD) is the 6th leading cause of death. Diagnosis of AD cannot be confidently confirmed until after death. This has prompted the importance of early diagnosis of AD, based upon symptoms of cognitive decline. A symptom of early cognitive decline and indicator of AD is Mild Cognitive Impairment (MCI). In addition to this qualitative test, Biomarker tests have been proposed in the medical field including p-Tau, FDG-PET, and hippocampal. These tests can be administered to patients as early detectors of AD thus improving patients’ life quality and potentially reducing the costs of the health structure. Preliminary work has been conducted in the development of a Sequential Tree Based Classifier (STC), which helps medical providers predict if a patient will contract AD or not, by sequentially testing these biomarker tests. The STC model, however, has its limitations and the need for a more complex, robust model is needed. In fact, STC assumes a general linear model as the status of the patient based upon the tests results. We take a simulation perspective and try to define a more complex model that represents the patient evolution in time.

Specifically, this thesis focuses on the formulation of a Markov Chain model that is complex and robust. This Markov Chain model emulates the evolution of MCI patients based upon doctor visits and the sequential administration of biomarker tests. Data provided to create this Markov Chain model were collected by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The data lacked detailed information of the sequential administration of the biomarker tests and therefore, different analytical approaches were tried and conducted in order to calibrate the model. The resulting Markov Chain model provided the capability to conduct experiments regarding different parameters of the Markov Chain and yielded different results of patients that contracted AD and those that did not, leading to important insights into effect of thresholds and sequence on patient prediction capability as well as health costs reduction.



The data in this thesis was provided from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI investigators did not contribute to any analysis or writing of this thesis. A list of the ADNI investigators can be found at: http://adni.loni.usc.edu/about/governance/principal-investigators/ .
ContributorsCamarena, Raquel (Author) / Pedrielli, Giulia (Thesis advisor) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2018
161762-Thumbnail Image.png
Description
Nonalcoholic Steatohepatitis (NASH) is a severe form of Nonalcoholic fatty liverdisease, that is caused due to excessive calorie intake, sedentary lifestyle and in the absence of severe alcohol consumption. It is widely prevalent in the United States and in many other developed countries, affecting up to 25 percent of the population. Due to

Nonalcoholic Steatohepatitis (NASH) is a severe form of Nonalcoholic fatty liverdisease, that is caused due to excessive calorie intake, sedentary lifestyle and in the absence of severe alcohol consumption. It is widely prevalent in the United States and in many other developed countries, affecting up to 25 percent of the population. Due to being asymptotic, it usually goes unnoticed and may lead to liver failure if not treated at the right time. Currently, liver biopsy is the gold standard to diagnose NASH, but being an invasive procedure, it comes with it's own complications along with the inconvenience of sampling repeated measurements over a period of time. Hence, noninvasive procedures to assess NASH are urgently required. Magnetic Resonance Elastography (MRE) based Shear Stiffness and Loss Modulus along with Magnetic Resonance Imaging based proton density fat fraction have been successfully combined to predict NASH stages However, their role in the prediction of disease progression still remains to be investigated. This thesis thus looks into combining features from serial MRE observations to develop statistical models to predict NASH progression. It utilizes data from an experiment conducted on male mice to develop progressive and regressive NASH and trains ordinal models, ordered probit regression and ordinal forest on labels generated from a logistic regression model. The models are assessed on histological data collected at the end point of the experiment. The models developed provide a framework to utilize a non-invasive tool to predict NASH disease progression.
ContributorsDeshpande, Eeshan (Author) / Ju, Feng (Thesis advisor) / Wu, Teresa (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2021