Matching Items (3)
Filtering by

Clear all filters

149976-Thumbnail Image.png
Description
The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known as Philadelphia chromosome positive (Ph+). Currently, Imatinib (selective Abl inhibitor) is used as therapy against CML and ALL. However, some patients may have malignancies which show resistance to Imatinib. Previous work displays that the transformation of progenitor B cells with the v-Abl oncogene of Abelson murine leukemia virus results in cell cycle progression, rapid proliferation, and potentially malignant transformation while preventing any further differentiation. Progenitor B cells transformed with the temperature-sensitive form of the v-Abl oncogene have served as a model to study cellular response to Imatinib treatment. After some manipulation, very few cells were forced to progress to malignancy, forming tumor in vivo. These cells were no long sensitive to v-Abl inactivation, resembling the Imatinib resistant ALL. Autophagy is the process by which proteins and organelles are broken-down and recycled within the eukaryotic cell and has been hypothesized to play a part in cancer cell survival and drug-resistance. LC3 processing is a widely accepted marker of autophagy induction and progression. It has also been shown that Imatinib treatment of Ph+ leukemia can induce autophagy. In this study, we examined the autophagy induction in response to v-Abl inactivation in a Ph+-B-ALL cell model that shows resistance to Imatinib. In particular, we wonder whether the tumor cell line resistant to v-Abl inactivation may acquire a high level of autophagy to become resistant to apoptosis induced by v-Abl inactivation, and thus become addicted to autophagy. Indeed, this tumor cell line displays a high basal levels of LC3 I and II expression, regardless of v-Abl activity. We further demonstrated that inhibition of the autophagy pathway enhances the tumor line's sensitivity to Imatinib, resulting in cell cycle arrest and massive apoptosis. The combination of autophagy and Abl inhibitions may serve as an effective therapy for BCR-Abl positive CML.
ContributorsArkus, Nohea (Author) / Chang, Yung (Thesis advisor) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2011
171548-Thumbnail Image.png
Description
Skeletal muscle can intrinsically repair itself in response to injury. This repair process has been shown to be mediated through signaling of the innate immune system. The immune response caused during repair helps to clear away debris in damage and promotes the activation and proliferation of muscle stem cells (MuSCs)

Skeletal muscle can intrinsically repair itself in response to injury. This repair process has been shown to be mediated through signaling of the innate immune system. The immune response caused during repair helps to clear away debris in damage and promotes the activation and proliferation of muscle stem cells (MuSCs) that will repair the damage muscle. Dysregulation of this inflammation leads to fibrosis and decreased efficacy of the repair process. Despite the requirement of inflammatory signaling during muscle repair, muscle’s contribution during inflammation as only recently started to be explored. The objective of this dissertation is to assess the contribution of muscle in the early inflammatory response during repair as well attempting to modulate this inflammation during disease to ameliorate disease pathology in a model of Duchenne’s muscular dystrophy. I tested the hypotheses that 1) muscle is an active participant in the early inflammatory response, 2) the transcription factor Mohawk (Mkx) is a regulator of the early inflammatory response and, 3) If this inflammation can be modulated with a virally derived serine protease inhibitor in a model of muscle disrepair and chronic inflammation. I found that muscle is actively participating in the establishment early inflammation in repair through the production of chemokines used to promote infiltration of immune cells. As well as the identification of a new muscle subtype that produces more chemokines compared to the average MuSC and upregulated genes in the Interferon signaling pathway. I also discovered that presence of this muscle subtype is linked to the expression of Mkx. In Mkx null mice this population is not present, and these cells are deficient in chemokine expression compared to WT mice. I subsequently found that, using the myxomavirus derived serine protease inhibitor, Serp-1 I was able to modulate the chronic inflammation that is common in those affected with Duchenne’s muscular dystrophy (DMD) utilizing a high-fidelity mouse model of the disease. The result of this dissertation provides an expanded role for muscle in inflammation and gives a potential new class of therapeutics to be used in disease associated with chronic inflammation.
ContributorsAndre, Alex (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Lake, Doug (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2022
158846-Thumbnail Image.png
Description
Intracerebral hemorrhage (ICH) is a devastating type of acute brain injury with high mortality and disability. Acute brain injury swiftly alters the immune reactivity within and outside the brain; however, the mechanisms and influence on neurological outcome remains largely unknown. My dissertation investigated how ICH triggers focal and systemic immune

Intracerebral hemorrhage (ICH) is a devastating type of acute brain injury with high mortality and disability. Acute brain injury swiftly alters the immune reactivity within and outside the brain; however, the mechanisms and influence on neurological outcome remains largely unknown. My dissertation investigated how ICH triggers focal and systemic immune responses and their impact hemorrhagic brain injury. At the focal level, a significant upregulation of interleukin (IL)-15 was identified in astrocytes of brain sections from ICH patients. A transgenic mouse line where the astrocytic IL-15 expression is controlled by a glial fibrillary acidic protein promoter (GFAP-IL-15tg) was generated to investigate its role in ICH. Astrocyte-targeted expression of IL-15 exacerbated brain edema and neurological deficits following ICH. Aggravated ICH injury was accompanied by an accumulation of pro-inflammatory microglia proximal to astrocytes in perihematomal tissues, microglial depletion attenuated the augmented ICH injury in GFAP-IL-15tg mice. These findings suggest that IL-15 mediates the crosstalk between astrocytes and microglia, which worsens ICH injury.Systemic immune response was investigated by leveraging the novel method of obtaining and analyzing bone marrow cells from the cranial bone flaps of ICH patients. A swift increase of hematopoietic stem cell (HSCs) population in the bone marrow was identified, along with a shift towards the myeloid cell lineage. Human findings were mirrored in an ICH mouse model. Fate mapping these HSCs revealed increased genesis of Ly6Clow monocytes in the bone marrow, which transmigrate into the hemorrhagic brain and give rise to alternative activation marker bearing macrophage. Blockade of the β3-adrenergic receptor or inhibition of Cdc42 abolished ICH-induced myeloid bias of HSCs. Importantly, mirabegron, a Food and Drug Administration-approved β3 adrenergic receptor agonist, and a Cdc42 activator, IL-3, enhanced bone marrow generation of Ly6Clow monocytes and improved recovery. These results suggest that brain injury modulates HSC lineage destination to curb distal brain inflammation, implicating the bone marrow as a unique niche for self-protective neuroimmune interactions. Together, these results demonstrate how acute brain injury exerts a profound yet distinct effect on immune responses within and outside the brain and sheds new light on neuroimmune interactions with potential clinical implications.
ContributorsShi, Samuel Xiang-yu (Author) / Chang, Yung (Thesis advisor) / Liu, Qiang (Committee member) / Gonzales, Rayna J (Committee member) / Ducruet, Andrew F (Committee member) / Arizona State University (Publisher)
Created2020