Matching Items (5)
Filtering by

Clear all filters

153191-Thumbnail Image.png
Description
Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are

Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are presented but, to the best of our knowledge, the effects of real-time feedback of step length and uprightness of posture on gait and posture have not been specifically investigated. If it can be demonstrated that real-time feedback can improve posture and gait, the resultant knowledge could be used to design effective rehabilitation strategies to improve quality of life in this population.

In this feasibility study, we have developed a treadmill-based experimental paradigm to provide feedback of step length and upright posture in real-time. Ten subjects (mean age 65.9 ± 7.6 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were evaluated in their ability to successfully utilize real-time feedback presented during quiet standing and treadmill walking tasks during a single data collection session in their medication-on state. During quiet standing tasks in which back angle feedback was provided, subjects were asked to utilize the feedback to maintain upright posture. During treadmill walking tasks, subjects walked at their self-selected speed for five minutes without feedback, with feedback of back angle, or with feedback of step length. During walking tasks with back angle feedback, subjects were asked to utilize the feedback to maintain upright posture. During walking tasks with step length feedback, subjects were asked to utilize the feedback to walk with increased step length. During quiet standing tasks, measurements of back angle were obtained; during walking tasks, measurements of back angle, step length, and step time were obtained.

Subjects stood and walked with significantly increased upright posture during the tasks with real-time back angle feedback compared to tasks without feedback. Similarly, subjects walked with significantly increased step length during tasks with real-time step length feedback compared to tasks without feedback. These results demonstrate that people with PD can utilize real-time feedback to improve upright posture and gait.
ContributorsJellish, Jeremy (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
151099-Thumbnail Image.png
Description
Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control

Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control from the brain. In the case of incomplete paraplegia, locomotion is impaired and often results in increased incidence of foot drag and decreased postural stability after injury. The overall goal of this work is to understand how changes in kinematics of movement and neural control of muscles effect locomotor coordination following SCI. Toward this end, we examined musculoskeletal parameters and kinematics of gait in rats with and without incomplete SCI (iSCI) and used an empirically developed computational model to test related hypotheses. The first study tested the hypothesis that iSCI causes a decrease in locomotor and joint angle movement complexity. A rat model was used to measure musculoskeletal properties and gait kinematics following mild iSCI. The data indicated joint-specific changes in kinematics in the absence of measurable muscle atrophy, particularly at the ankle as a result of the injury. Kinematic changes manifested as a decrease in complexity of ankle motion as indicated by measures of permutation entropy. In the second study, a new 2-dimensional computational model of the rat ankle combining forward and inverse dynamics was developed using the previously collected data. This model was used to test the hypothesis that altered coordination of flexor and extensor muscles (specifically alteration in burst shape and timing) acting at the ankle joint could be responsible for increases in incidence of foot drag following injury. Simulation results suggest a time course for changes in neural control following injury that begins with foot drag and decreased delay between antagonistic muscle activations. Following this, beneficial adaptations in muscle activation profile and ankle kinematics counteract the decreased delay to allow foot swing. In both studies, small changes in neural control caused large changes in behavior, particularly at the ankle. Future work will further examine the role of neural control of hindlimb in rat locomotion following iSCI.
ContributorsHillen, Brian (Author) / Jung, Ranu (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jit (Committee member) / Jindrich, Devin (Committee member) / Yamaguchi, Gary (Committee member) / Arizona State University (Publisher)
Created2012
153906-Thumbnail Image.png
Description
Described is a study investigating the feasibility and predictive value of the Teacher Feedback Coding System, a novel observational measure of teachers’ feedback provided to students in third grade classrooms. This measure assessed individual feedback events across three domains: feedback type, level of specificity and affect of the teacher.

Described is a study investigating the feasibility and predictive value of the Teacher Feedback Coding System, a novel observational measure of teachers’ feedback provided to students in third grade classrooms. This measure assessed individual feedback events across three domains: feedback type, level of specificity and affect of the teacher. Exploratory and confirmatory factor analysis revealed five factors indicating separate types of feedback: positive and negative academic-informative feedback, positive and negative behavioral-informative feedback, and an overall factor representing supportive feedback. Multilevel models revealed direct relations between teachers’ negative academic-informative feedback and students’ spring math achievement, as well as between teachers’ negative behavioral-informative feedback and students’ behavior patterns. Additionally, a fall math-by-feedback interaction was detected in the case of teachers’ positive academic-informative feedback; students who began the year struggling in math benefitted from more of this type of feedback. Finally, teachers’ feedback was investigated as a potential mediator in a previously established relation between teachers’ self-reported depressive symptoms and the observed quality of the classroom environment. Partial mediation was detected in the case of teachers’ positive academic-informative feedback, such that this type of feedback was accountable for a portion of the variance observed in the relation between teachers’ depressive symptoms and the quality of the classroom environment.
ContributorsMcLean, Leigh Ellen (Author) / Connor, Carol M. (Thesis advisor) / Lemery, Kathryn (Committee member) / Doane, Leah (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2015
133785-Thumbnail Image.png
Description
This study was conducted to examine the potential effects of exercise training on partial spinal cord injury on locomotor recovery in juvenile rats. Three groups were tested, where three female Long-Evans rats 10-12 weeks of age were studied for their locomotion. All animals underwent a T8-T9 laminectomy and two of

This study was conducted to examine the potential effects of exercise training on partial spinal cord injury on locomotor recovery in juvenile rats. Three groups were tested, where three female Long-Evans rats 10-12 weeks of age were studied for their locomotion. All animals underwent a T8-T9 laminectomy and two of the three in each group received a dorsal, partial spinal cord injury. Locomotion was then analyzed every week, over 8-10 weeks. One of the two injured animals was given open access to a wheel after 2 weeks for voluntary exercise training. The results of this study suggested that injured animals displayed more irregular stepping patterns, larger hindlimb bases of support, greater and more variable interpaw distances, slower hindlimb speed, and increased dependency of swing-phase duty cycle on hindlimb speed. Trained animals displayed quicker recovery of stepping patterns, stepping of the hindpaw in relation to the preceding ipsilateral forepaw, and higher swing-duty cycle dependency on hindlimb speed in comparison to injured animals that did not receive exercise training. Due to a small sample size, there was a large amount of variation between individual animals in most parameters. These results are considered to be potential effects that may be seen in further study with a larger sample size. The research team will continue the research project to examine changes in neural pathways in the spinal cord and the effects of exercise on recovery after injury.
ContributorsSleem, Tamara Hatem (Author) / Abbas, James (Thesis director) / Hamm, Thomas (Committee member) / School of Human Evolution and Social Change (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155689-Thumbnail Image.png
Description
Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool

Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool that connects paper-based assessments to digital space. I designed a classroom study and collected data from ASU computer science classes. I tracked and modeled students' reviewing and reflecting behaviors based on the use of WPGA. I analyzed students' reviewing efforts, in terms of frequency, timing, and the associations with their academic performances. Results showed that students put extra emphasis in reviewing prior to the exams and the efforts demonstrated the desire to review formal assessments regardless of if they were graded for academic performance or for attendance. In addition, all students paid more attention on reviewing quizzes and exams toward the end of semester.
ContributorsHuang, Po-Kai (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017