Matching Items (5)
Filtering by

Clear all filters

135211-Thumbnail Image.png
Description
We hypothesized that recurrent exposure to a temporal discounting task would habitize participants, so that they become insensitive to framing effects. Temporal discounting is a behavioral trend which describes how people discount the value of a reward dependent on the time until receipt. Participants completed a temporal discounting task weekly

We hypothesized that recurrent exposure to a temporal discounting task would habitize participants, so that they become insensitive to framing effects. Temporal discounting is a behavioral trend which describes how people discount the value of a reward dependent on the time until receipt. Participants completed a temporal discounting task weekly for five weeks, to promote formation of a habitual decision strategy. Concomitant with this, we expected that people would shift their decision process from a deliberate, goal-oriented approach that is sensitive to changes in reward outcomes and environmental context, to a simplified, automatic approach that minimizes cognitive effort. We expected that this shift in decision strategy would be evident in a reduced influence of contextual effects on choice outcomes. We tested this hypothesis by leveraging two framing effects \u2014 the date/delay effect and the decimal effect. Consistent with our hypothesis, we find that the date/delay effect is significant on week 1, shows significant changes in week 1 to week 5, and is no longer significant on week 5. The results for the decimal effects were not significant. We discuss these results with respect to the cognitive processes that underlie temporal discounting and self-control.
ContributorsSt Amand, Jesse Dean (Author) / McClure, Samuel (Thesis director) / Sanabria, Federico (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133734-Thumbnail Image.png
Description
Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment

Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment of and (b) correlated with the white-matter structure of the executive control network, particularly related to the dorsolateral prefrontal cortex (dlPFC). By using long-duration musical stimuli, we were able to track the initial biasing, subsequent perception, and ultimate evaluation of the stimuli, examining the full evolution of these biases over time. Our findings confirm the persistence of confirmation bias effects even when ample opportunity exists to gather information about true stimulus quality, and underline the importance of executive control in reducing bias.
ContributorsAydogan, Goekhan (Co-author, Committee member) / Flaig, Nicole (Co-author) / Larg, Edward W. (Co-author) / Margulis, Elizabeth Hellmuth (Co-author) / McClure, Samuel (Co-author, Thesis director) / Nagishetty Ravi, Srekar Krishna (Co-author) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134584-Thumbnail Image.png
Description
There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated

There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated a portion of the methods of Clark et al. (2014) in an attempt to support the presence of these two fallacies in online simulated risky decision-making tasks. One hundred individuals were recruited and asked to perform one of two classic gambling tasks, either predict the outcome of a dichromatic roulette wheel or spin a simplified, two-reel slot machine. An analysis of color predictions as a function of run length revealed a classic gambler's fallacy effect in the roulette wheel task. A heightened motivation to continue playing after a win, but not a near or full miss, was seen in the slot machine task. How pleased an individual was with the results of the previous round directly affected his or her interest in continuing to play in both experiments. These findings indicate that the gambler's fallacy is present in online decision-making simulations involving risk, but that the near-miss effect is not.
ContributorsCatinchi, Alexis Leigh (Author) / McClure, Samuel (Thesis director) / Glenberg, Arthur (Committee member) / Gatewood, Kira (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor

Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor temporal resolution compared with the speed at which people make choices, so understanding choice dynamics using fMRI is difficult. We address the issue utilizing electroencephalography (EEG) to study cortical processes related to temporal discounting. The fMRI literature has found that a network of fronto-parietal brain regions plays an important role during the decision-making process. We aim to explore activity in these regions during the decision process and determine how cortical activity relates to choice parameters. Based on prior fMRI studies, we hypothesized that dorsomedial prefrontal cortex (dmPFC) may act as a regulator of dorsal lateral prefrontal cortex (dlPFC) and there will be an increase in dlPFC activity for more difficult decisions. We also hypothesized that neural activity may be directly related to the temporal discount rate we estimate behaviorally. We utilized regression analysis to determine the relationship. The results found supported our hypotheses. This study may open the door to a better understanding of the dynamic of brain regions while performing a temporal discounting task.
Created2017-05
134869-Thumbnail Image.png
Description
By providing vignettes with manipulated scientific evidence, this research examined if including more or less scientific detail affected decision-making in regards to the death penalty. Participants were randomly assigned one of the two manipulations (less science and more science) after reading a short scenario introducing the mock capital trial and

By providing vignettes with manipulated scientific evidence, this research examined if including more or less scientific detail affected decision-making in regards to the death penalty. Participants were randomly assigned one of the two manipulations (less science and more science) after reading a short scenario introducing the mock capital trial and their role as jury members. Survey respondents were told that a jury had previously found the defendant guilty and they would now deliberate the appropriate punishment. Before being exposed to the manipulation, respondents answered questions pertaining to their prior belief in the death penalty, as well as their level of support of procedural justice and science. These questions provided a baseline to compare to their sentencing decision. Participants were then asked what sentence they would impose \u2014 life in prison or death \u2014 and how the fMRI evidence presented by an expert witness for the defense affected their decision. Both quantitative and qualitative measures were used to identify how the level of scientific detail affected their decision. Our intended predictor variable (level of scientific detail) did not affect juror decision-making. In fact, the qualitative results revealed a variety of interpretations of the scientific evidence used both in favor of death and in favor of life. When looking at what did predict juror decision-making, gender, prior belief in the death penalty, and political ideology all were significant predictors. As in previous literature, the fMRI evidence in our study had mixed results with regards to implementation of the death penalty. This held true in both of our manipulations, showing that despite the level of detail in evidence intended for mitigation, jurors with preconceived notions may still disregard the evidence, and some jurors may even view it is aggravating and thus increase the likelihood of a death sentence for a defendant with such brain abnormalities.
ContributorsBerry, Megan Cheyenne (Author) / Fradella, Hank (Thesis director) / Pardini, Dustin (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12