Matching Items (9)
Filtering by

Clear all filters

151878-Thumbnail Image.png
Description
Researchers across a variety of fields are often interested in determining if data are of a random nature or if they exhibit patterning which may be the result of some alternative and potentially more interesting process. This dissertation explores a family of statistical methods, i.e. space-time interaction tests, designed to

Researchers across a variety of fields are often interested in determining if data are of a random nature or if they exhibit patterning which may be the result of some alternative and potentially more interesting process. This dissertation explores a family of statistical methods, i.e. space-time interaction tests, designed to detect structure within three-dimensional event data. These tests, widely employed in the fields of spatial epidemiology, criminology, ecology and beyond, are used to identify synergistic interaction across the spatial and temporal dimensions of a series of events. Exploration is needed to better understand these methods and determine how their results may be affected by data quality problems commonly encountered in their implementation; specifically, how inaccuracy and/or uncertainty in the input data analyzed by the methods may impact subsequent results. Additionally, known shortcomings of the methods must be ameliorated. The contributions of this dissertation are twofold: it develops a more complete understanding of how input data quality problems impact the results of a number of global and local tests of space-time interaction and it formulates an improved version of one global test which accounts for the previously identified problem of population shift bias. A series of simulation experiments reveal the global tests of space-time interaction explored here to be dramatically affected by the aforementioned deficiencies in the quality of the input data. It is shown that in some cases, a conservative degree of these common data problems can completely obscure evidence of space-time interaction and in others create it where it does not exist. Conversely, a local metric of space-time interaction examined here demonstrates a surprising robustness in the face of these same deficiencies. This local metric is revealed to be only minimally affected by the inaccuracies and incompleteness introduced in these experiments. Finally, enhancements to one of the global tests are presented which solve the problem of population shift bias associated with the test and better contextualize and visualize its results, thereby enhancing its utility for practitioners.
ContributorsMalizia, Nicholas (Author) / Anselin, Luc (Thesis advisor) / Murray, Alan (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2013
151538-Thumbnail Image.png
Description
There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is necessary. Spatial analytical approaches, in particular, must somehow address data quality issues. This can range from evaluating impacts of potential

There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is necessary. Spatial analytical approaches, in particular, must somehow address data quality issues. This can range from evaluating impacts of potential data uncertainty in planning processes that make use of methods to devising methods that explicitly account for error/uncertainty. To date, little has been done to structure methods accounting for error. This research focuses on developing methods to address geographic data uncertainty in spatial optimization. An integrated approach that characterizes uncertainty impacts by constructing and solving a new multi-objective model that explicitly incorporates facets of data uncertainty is developed. Empirical findings illustrate that the proposed approaches can be applied to evaluate the impacts of data uncertainty with statistical confidence, which moves beyond popular practices of simulating errors in data. Spatial uncertainty impacts are evaluated in two contexts: harvest scheduling and sex offender residency. Owing to the integration of spatial uncertainty, the detailed multi-objective models are more complex and computationally challenging to solve. As a result, a new multi-objective evolutionary algorithm is developed to address the computational challenges posed. The proposed algorithm incorporates problem-specific spatial knowledge to significantly enhance the capability of the evolutionary algorithm for solving the model.  
ContributorsWei, Ran (Author) / Murray, Alan T. (Thesis advisor) / Anselin, Luc (Committee member) / Rey, Segio J (Committee member) / Mack, Elizabeth A. (Committee member) / Arizona State University (Publisher)
Created2013
152171-Thumbnail Image.png
Description

Choropleth maps are a common form of online cartographic visualization. They reveal patterns in spatial distributions of a variable by associating colors with data values measured at areal units. Although this capability of pattern revelation has popularized the use of choropleth maps, existing methods for their online delivery are limited

Choropleth maps are a common form of online cartographic visualization. They reveal patterns in spatial distributions of a variable by associating colors with data values measured at areal units. Although this capability of pattern revelation has popularized the use of choropleth maps, existing methods for their online delivery are limited in supporting dynamic map generation from large areal data. This limitation has become increasingly problematic in online choropleth mapping as access to small area statistics, such as high-resolution census data and real-time aggregates of geospatial data streams, has never been easier due to advances in geospatial web technologies. The current literature shows that the challenge of large areal data can be mitigated through tiled maps where pre-processed map data are hierarchically partitioned into tiny rectangular images or map chunks for efficient data transmission. Various approaches have emerged lately to enable this tile-based choropleth mapping, yet little empirical evidence exists on their ability to handle spatial data with large numbers of areal units, thus complicating technical decision making in the development of online choropleth mapping applications. To fill this knowledge gap, this dissertation study conducts a scalability evaluation of three tile-based methods discussed in the literature: raster, scalable vector graphics (SVG), and HTML5 Canvas. For the evaluation, the study develops two test applications, generates map tiles from five different boundaries of the United States, and measures the response times of the applications under multiple test operations. While specific to the experimental setups of the study, the evaluation results show that the raster method scales better across various types of user interaction than the other methods. Empirical evidence also points to the superior scalability of Canvas to SVG in dynamic rendering of vector tiles, but not necessarily for partial updates of the tiles. These findings indicate that the raster method is better suited for dynamic choropleth rendering from large areal data, while Canvas would be more suitable than SVG when such rendering frequently involves complete updates of vector shapes.

ContributorsHwang, Myunghwa (Author) / Anselin, Luc (Thesis advisor) / Rey, Sergio J. (Committee member) / Wentz, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2013
Description
ABSTRACT

This study examines validity evidence of a state policy-directed teacher evaluation system implemented in Arizona during school year 2012-2013. The purpose was to evaluate the warrant for making high stakes, consequential judgments of teacher competence based on value-added (VAM) estimates of instructional impact and observations of professional practice (PP).

ABSTRACT

This study examines validity evidence of a state policy-directed teacher evaluation system implemented in Arizona during school year 2012-2013. The purpose was to evaluate the warrant for making high stakes, consequential judgments of teacher competence based on value-added (VAM) estimates of instructional impact and observations of professional practice (PP). The research also explores educator influence (voice) in evaluation design and the role information brokers have in local decision making. Findings are situated in an evidentiary and policy context at both the LEA and state policy levels.

The study employs a single-phase, concurrent, mixed-methods research design triangulating multiple sources of qualitative and quantitative evidence onto a single (unified) validation construct: Teacher Instructional Quality. It focuses on assessing the characteristics of metrics used to construct quantitative ratings of instructional competence and the alignment of stakeholder perspectives to facets implicit in the evaluation framework. Validity examinations include assembly of criterion, content, reliability, consequential and construct articulation evidences. Perceptual perspectives were obtained from teachers, principals, district leadership, and state policy decision makers. Data for this study came from a large suburban public school district in metropolitan Phoenix, Arizona.

Study findings suggest that the evaluation framework is insufficient for supporting high stakes, consequential inferences of teacher instructional quality. This is based, in part on the following: (1) Weak associations between VAM and PP metrics; (2) Unstable VAM measures across time and between tested content areas; (3) Less than adequate scale reliabilities; (4) Lack of coherence between theorized and empirical PP factor structures; (5) Omission/underrepresentation of important instructional attributes/effects; (6) Stakeholder concerns over rater consistency, bias, and the inability of test scores to adequately represent instructional competence; (7) Negative sentiments regarding the system's ability to improve instructional competence and/or student learning; (8) Concerns regarding unintended consequences including increased stress, lower morale, harm to professional identity, and restricted learning opportunities; and (9) The general lack of empowerment and educator exclusion from the decision making process. Study findings also highlight the value of information brokers in policy decision making and the importance of having access to unbiased empirical information during the design and implementation phases of important change initiatives.
ContributorsSloat, Edward F. (Author) / Wetzel, Keith (Thesis advisor) / Amrein-Beardsley, Audrey (Thesis advisor) / Ewbank, Ann (Committee member) / Shough, Lori (Committee member) / Arizona State University (Publisher)
Created2015
150225-Thumbnail Image.png
Description
Regional differences of inventive activity and economic growth are important in economic geography. These differences are generally explained by the theory of localized knowledge spillovers, which argues that geographical proximity among economic actors fosters invention and innovation. However, knowledge production involves an increasing number of actors connecting to non-local partners.

Regional differences of inventive activity and economic growth are important in economic geography. These differences are generally explained by the theory of localized knowledge spillovers, which argues that geographical proximity among economic actors fosters invention and innovation. However, knowledge production involves an increasing number of actors connecting to non-local partners. The space of knowledge flows is not tightly bounded in a given territory, but functions as a network-based system where knowledge flows circulate around alignments of actors in different and distant places. The purpose of this dissertation is to understand the dynamics of network aspects of knowledge flows in American biotechnology. The first research task assesses both spatial and network-based dependencies of biotechnology co-invention across 150 large U.S. metropolitan areas over four decades (1979, 1989, 1999, and 2009). An integrated methodology including both spatial and social network analyses are explicitly applied and compared. Results show that the network-based proximity better defines the U.S. biotechnology co-invention urban system in recent years. Co-patenting relationships of major biotechnology centers has demonstrated national and regional association since the 1990s. Associations retain features of spatial proximity especially in some Midwestern and Northeastern cities, but these are no longer the strongest features affecting co-inventive links. The second research task examines how biotechnology knowledge flows circulate over space by focusing on the structural properties of intermetropolitan co-invention networks. All analyses in this task are conducted using social network analysis. Evidence shows that the architecture of the U.S. co-invention networks reveals a trend toward more organized structures and less fragmentation over the four years of analysis. Metropolitan areas are increasingly interconnected into a large web of networked environment. Knowledge flows are less likely to be controlled by a small number of intermediaries. San Francisco, New York, Boston, and San Diego monopolize the central positions of the intermetropolitan co-invention network as major American biotechnology concentrations. The overall network-based system comes close to a relational core/periphery structure where core metropolitan areas are strongly connected to one another and to some peripheral areas. Peripheral metropolitan areas are loosely connected or even disconnected with each other. This dissertation provides empirical evidence to support the argument that technological collaboration reveals a network-based system associated with different or even distant geographical places, which is somewhat different from the conventional theory of localized knowledge spillovers that once dominated understanding of the role of geography in technological advance.
ContributorsLee, Der-Shiuan (Author) / Ó Huallacháin, Breandán (Thesis advisor) / Anselin, Luc (Committee member) / Kuby, Michael (Committee member) / Lobo, Jose (Committee member) / Arizona State University (Publisher)
Created2011
151109-Thumbnail Image.png
Description
Decades ago in the U.S., clear lines delineated which neighborhoods were acceptable for certain people and which were not. Techniques such as steering and biased mortgage practices continue to perpetuate a segregated outcome for many residents. In contrast, ethnic enclaves and age restricted communities are viewed as voluntary segregation based

Decades ago in the U.S., clear lines delineated which neighborhoods were acceptable for certain people and which were not. Techniques such as steering and biased mortgage practices continue to perpetuate a segregated outcome for many residents. In contrast, ethnic enclaves and age restricted communities are viewed as voluntary segregation based on cultural and social amenities. This diversity surrounding the causes of segregation are not just region-wide characteristics, but can vary within a region. Local segregation analysis aims to uncover this local variation, and hence open the door to policy solutions not visible at the global scale. The centralization index, originally introduced as a global measure of segregation focused on spatial concentration of two population groups relative a region's urban center, has lost relevancy in recent decades as regions have become polycentric, and the index's magnitude is sensitive to the particular point chosen as the center. These attributes, which make it a poor global measure, are leveraged here to repurpose the index as a local measure. The index's ability to differentiate minority from majority segregation, and its focus on a particular location within a region make it an ideal local segregation index. Based on the local centralization index for two groups, a local multigroup variation is defined, and a local space-time redistribution index is presented capturing change in concentration of a single population group over two time periods. Permutation based inference approaches are used to test the statistical significance of measured index values. Applications to the Phoenix, Arizona metropolitan area show persistent cores of black and white segregation over the years 1990, 2000 and 2010, and a trend of white segregated neighborhoods increasing at a faster rate than black. An analysis of the Phoenix area's recently opened light rail system shows that its 28 stations are located in areas of significant white, black and Hispanic segregation, and there is a clear concentration of renters over owners around most stations. There is little indication of statistically significant change in segregation or population concentration around the stations, indicating a lack of near term impact of light rail on the region's overall demographics.
ContributorsFolch, David C. (Author) / Rey, Sergio J (Thesis advisor) / Anselin, Luc (Committee member) / Murray, Alan T. (Committee member) / Arizona State University (Publisher)
Created2012
155931-Thumbnail Image.png
Description
Gerrymandering is a central problem for many representative democracies. Formally, gerrymandering is the manipulation of spatial boundaries to provide political advantage to a particular group (Warf, 2006). The term often refers to political district design, where the boundaries of political districts are “unnaturally” manipulated by redistricting officials to generate durable

Gerrymandering is a central problem for many representative democracies. Formally, gerrymandering is the manipulation of spatial boundaries to provide political advantage to a particular group (Warf, 2006). The term often refers to political district design, where the boundaries of political districts are “unnaturally” manipulated by redistricting officials to generate durable advantages for one group or party. Since free and fair elections are possibly the critical part of representative democracy, it is important for this cresting tide to have scientifically validated tools. This dissertation supports a current wave of reform by developing a general inferential technique to “localize” inferential bias measures, generating a new type of district-level score. The new method relies on the statistical intuition behind jackknife methods to construct relative local indicators. I find that existing statewide indicators of partisan bias can be localized using this technique, providing an estimate of how strongly a district impacts statewide partisan bias over an entire decade. When compared to measures of shape compactness (a common gerrymandering detection statistic), I find that weirdly-shaped districts have no consistent relationship with impact in many states during the 2000 and 2010 redistricting plan. To ensure that this work is valid, I examine existing seats-votes modeling strategies and develop a novel method for constructing seats-votes curves. I find that, while the empirical structure of electoral swing shows significant spatial dependence (even in the face of spatial heterogeneity), existing seats-votes specifications are more robust than anticipated to spatial dependence. Centrally, this dissertation contributes to the much larger social aim to resist electoral manipulation: that individuals & organizations suffer no undue burden on political access from partisan gerrymandering.
ContributorsWolf, Levi (Author) / Rey, Sergio J (Thesis advisor) / Anselin, Luc (Committee member) / Fotheringham, A. Stewart (Committee member) / Tam Cho, Wendy K (Committee member) / Arizona State University (Publisher)
Created2017
136787-Thumbnail Image.png
Description
There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City of Phoenix Head Start program consists of nine delegate agencies,

There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City of Phoenix Head Start program consists of nine delegate agencies, seven of which reside in school districts. These agencies are currently not conducting local longitudinal evaluations of their preschool graduates. The purpose of this study was to recommend initial steps the City of Phoenix grantee and the delegate agencies can take to begin a longitudinal evaluation process of their Head Start programs. Seven City of Phoenix Head Start agency directors were interviewed. These interviews provided information about the attitudes of the directors when considering longitudinal evaluations and how Head Start already evaluates their programs through internal assessments. The researcher also took notes on the Third Grade Follow-Up to the Head Start Executive Summary in order to make recommendations to the City of Phoenix Head Start programs about the best practices for longitudinal student evaluations.
Created2014-05
155841-Thumbnail Image.png
Description
A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation.

The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.
ContributorsKolak, Marynia Aniela (Author) / Anselin, Luc (Thesis advisor) / Rey, Sergio (Committee member) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2017