Matching Items (213)
Filtering by

Clear all filters

152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136171-Thumbnail Image.png
Description
The diagnosis of bacterial infections based on phage multiplication has the potential for profound clinical implications, particularly for antibiotic-resistant strains and the slow-growing Mycobacterium tuberculosis. The possibility of hastening the diagnosis of antibiotic-resistant mycobacterial infections was accomplished via the study of Mycobacterium smegmatis, a generally non-pathogenic, comparatively fast growing microorganism

The diagnosis of bacterial infections based on phage multiplication has the potential for profound clinical implications, particularly for antibiotic-resistant strains and the slow-growing Mycobacterium tuberculosis. The possibility of hastening the diagnosis of antibiotic-resistant mycobacterial infections was accomplished via the study of Mycobacterium smegmatis, a generally non-pathogenic, comparatively fast growing microorganism to M. tuberculosis. These proof-of-concept studies established that after transduction of M. smegmatis cells with bacteriophages, MALDI-TOF MS could be used to detect increased amounts of phage proteins. Recording the growth of M. smegmatis over an 8-hour period, starting with very low OD600 measurements, simulated bacterial loads in clinical settings. For the purposes of MALDI-TOF MS, the procedure for the most effective lethal exposure for M. smegmatis was determined to be a 1-hour incubation in a 95°C water bath. Successful precipitation of the lytic mycobacteriophages D29 and Giles was performed using chloroform and methanol and overlaid with 1-2 μL of α-cyano-4-hydoxycinnaminic acid, which allowed for more distinct and repeatable MALDI-TOF MS spectra. Phage D29 was found to produce an m/z peak at 18.477 kDa, which may have indicated a 2+-charged ion of the 34.8 kDa minor tail protein. The Giles proteins that were identified with MALDI-TOF MS have not been directly compared to protein values reported in the scientific literature. However, the MALDI-TOF MS spectra suggested that distinct peaks existed between M. smegmatis mc2155 and mycobacteriophages, indicating that successful infection with lytic phage and replication thereafter may have occurred. The distinct peaks between M. smegmatis and the phage can be used as indicators of the presence of mycobacteria. At this point, the limits of detection of each phage must be elucidated in order for MALDI-TOF MS spectra to be successfully implemented as a mechanism to rapidly detect antibiotic-resistant mycobacteria.
ContributorsBarrett, Rachael Lauren (Author) / Haydel, Shelley (Thesis director) / Sandrin, Todd (Committee member) / Maarsingh, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
147879-Thumbnail Image.png
Description

Extreme heat is the deadliest weather and climate-related hazard in the United States, and the threat it poses to urban residents is rising. City planners increasingly recognize these risks and are taking action to mitigate them. However, the COVID-19 pandemic has disrupted many plans. Building on a

Extreme heat is the deadliest weather and climate-related hazard in the United States, and the threat it poses to urban residents is rising. City planners increasingly recognize these risks and are taking action to mitigate them. However, the COVID-19 pandemic has disrupted many plans. Building on a previous survey which queried city planners from across the United States about how concerned they were about extreme heat, and their heat management efforts. This thesis examines how these perceptions and efforts have changed in the face of the COVID-19 pandemic. In general, it was found that public spaces which would typically have been used to shelter individuals from extreme heat conditions were closed to mitigate close-contact and to encourage social distancing. Furthermore, priorities were changed as the presence of the virus became commonplace, with plans being altered, delayed, or shelved to diverge more time and effort towards the crisis at hand. Working environments and conditions also changed, which in several cases led to technological shortcomings, resulting in further delays. Finally, most planners had attained a surface-level understanding of which socio-economic groups were most impacted by both COVID-19 and extreme heat, in congruence with the current literature written on the topic. Generally, it appears that planners feel that the impact of COVID-19 on heat planning efforts has been limited.

ContributorsNorris, Walker Yale (Author) / Meerow, Sara (Thesis director) / Keith, Ladd (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147893-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsQian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / English, Corinne (Co-author) / Agee, Claire (Co-author) / Mattson, Kyle (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147895-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsEnglish, Corinne (Co-author) / Cosgrove, Samuel (Co-author) / Mattson, Kyle (Co-author) / Agee, Claire (Co-author) / Qian, Michael (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147906-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsAgee, Claire (Co-author) / English, Corinne (Co-author) / Mattson, Kyle (Co-author) / Qian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147907-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsMattson, Kyle (Co-author) / Agee, Claire (Co-author) / English, Corinne (Co-author) / Cosgrove, Samuel (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Marketing (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148381-Thumbnail Image.png
Description

Healthcare facilities are essential for any community, and they must stay up-to-date with the latest equipment and technology. They provide necessary resources for keeping populations healthy and safe. In order to provide healthcare services, these healthcare facilities must be adequately equipped with appropriate physical capital as well as software to

Healthcare facilities are essential for any community, and they must stay up-to-date with the latest equipment and technology. They provide necessary resources for keeping populations healthy and safe. In order to provide healthcare services, these healthcare facilities must be adequately equipped with appropriate physical capital as well as software to meet the demands of their patients. Healthcare capital equipment planning involves building up a facility with all it’s equipment and is a part of the healthcare supply chain. Attainia is a healthcare capital equipment planning software used to assist equipment planners in organizing the procurement of equipment for their projects. Attainia has a large amount of data about the capital equipment supply chain through the Attainia equipment catalog. Analysis of this catalog data reveals different patterns in the spending patterns of capital equipment planners as well as trends in the supplier offerings. Since Attainia itself is a software, Attainia’s users have experience with implementing and integrating software into healthcare IT solutions. Their experiences give some insight into the complex nature of software implementations at healthcare facilities. The COVID-19 pandemic has affected healthcare facilities all over the world. Impacting the supply chain and hitting hospitals’ finances, COVID-19 has drastically changed many parts of the healthcare system. This paper will examine some of these ongoing effects from COVID-19 along with analysis on capital equipment planning, supply chain, and healthcare software implementation.

ContributorsShah, Shailee (Author) / Pye, Jessica (Thesis director) / Roumina, Kavous (Committee member) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148391-Thumbnail Image.png
Description

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and gauged their risk perception. Results from our analysis indicate that the students were knowledgeable about Covid-19 and were changing their habits and engaging with preventive measures. Results further suggest that students were prepared for the pandemic in terms of resources and were exhibiting high-risk perceptions. The data also revealed that students who were being cautious and engaging with preventive behaviors had a higher risk-perception than individuals who were not. As for individuals who were prepared for the pandemic in terms of supplies, their risk perception was similar to those who did not have supplies. Individuals who were prepared and capable of providing a single caretaker to tend to their sick household members and isolate them in a separate room had a higher risk perception than those who could not. These results can help describe how college students will react to a future significant event, what resources students may be in need of, and how universities can take additional steps to keep their students safe and healthy. The results from this study and recommendations will provide for a stronger and more understanding campus community during times of distress and can improve upon already established university protocols for health crises and even natural disasters.

ContributorsNaqvi, Avina Itrat (Co-author) / Shaikh, Sara (Co-author) / Jehn, Megan (Thesis director) / Adams, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05