Matching Items (19)
Filtering by

Clear all filters

148156-Thumbnail Image.png
Description

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition to the diagnostic polymerase chain reaction (PCR) test that is performed detecting the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), antibody testing is also performed in clinical laboratories. Antibody testing is used to detect a previous infection. Antibodies are produced as part of the immune response against SARS-CoV-2. There are many different forms of antibody tests and their sensitives and specificities have been examined and reviewed in the literature. Antibody testing can be used to determine the seroprevalence of the disease which can inform policy decisions regarding public health strategies. The results from antibody testing can also be used for creating new therapeutics like vaccines. The ABCTL recognizes the shifting need of the community to begin testing for previous infections of SARS-CoV-2 and is developing new forms of antibody testing that can meet them.

ContributorsRuan, Ellen (Co-author) / Smetanick, Jennifer (Co-author) / Majhail, Kajol (Co-author) / Anderson, Laura (Co-author) / Breshears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148176-Thumbnail Image.png
Description

In this project, I examined the relationship between lockdowns implemented by COVID-19 and the activity of animals in urban areas. I hypothesized that animals became more active in urban areas during COVID-19 quarantine than they were before and I wanted to see if my hypothesis could be researched through Twitter

In this project, I examined the relationship between lockdowns implemented by COVID-19 and the activity of animals in urban areas. I hypothesized that animals became more active in urban areas during COVID-19 quarantine than they were before and I wanted to see if my hypothesis could be researched through Twitter crowdsourcing. I began by collecting tweets using python code, but upon examining all data output from code-based searches, I concluded that it is quicker and more efficient to use the advanced search on Twitter website. Based on my research, I can neither confirm nor deny if the appearance of wild animals is due to the COVID-19 lockdowns. However, I was able to discover a correlational relationship between these two factors in some research cases. Although my findings are mixed with regard to my original hypothesis, the impact that this phenomenon had on society cannot be denied.

ContributorsHeimlich, Kiana Raye (Author) / Dorn, Ronald (Thesis director) / Martin, Roberta (Committee member) / Donovan, Mary (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147953-Thumbnail Image.png
Description

Actuaries can analyze healthcare trends to determine if rates are reasonable and if reserves are adequate. In this talk, we will provide a framework of methods to analyze the healthcare trend during the pandemic. COVID-19 may influence future healthcare cost trends in many ways. First, direct COVID-19 costs may increase

Actuaries can analyze healthcare trends to determine if rates are reasonable and if reserves are adequate. In this talk, we will provide a framework of methods to analyze the healthcare trend during the pandemic. COVID-19 may influence future healthcare cost trends in many ways. First, direct COVID-19 costs may increase the amount of total experienced healthcare costs. However, with the implementation of social distancing, the amount of regularly scheduled care may be deferred to a future date. There are also many unknown factors regarding the transmission of the virus. Implementing epidemiology models allows us to predict infections by studying the dynamics of the disease. The correlation between infection amounts and hospitalization occupancies provide a methodology to estimate the amount of deferred and recouped amounts of regularly scheduled healthcare costs. Thus, the combination of the models allows to model the healthcare cost trend impact due to COVID-19.

ContributorsGabric, Lydia Joan (Author) / Zhou, Hongjuan (Thesis director) / Zicarelli, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148187-Thumbnail Image.png
Description

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf people are directly affected in their ability to personally socialize and continue with daily routines. More specifically, this can constitute their ability to meet new people, connect with friends/family, and to perform in their work or learning environment. It also may result in further mental health changes and an increased reliance on technology. The impact of COVID-19 on the Deaf community in clinical settings must also be considered. This includes changes in policies for in-person interpreters and a rise in telehealth. Often, these effects can be representative of the pre-existing low health literacy, frequency of miscommunication, poor treatment, and the inconvenience felt by Deaf people when trying to access healthcare. Ultimately, these effects on the Deaf community must be taken into account when attempting to create a full picture of the societal shift caused by COVID-19.

ContributorsDubey, Shreya Shashi (Co-author) / Asuncion, David Leonard (Co-author) / Patterson, Lindsey (Thesis director) / Lee, Lindsay (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136083-Thumbnail Image.png
Description
Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age

Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age groups, especially the young, and senior sparing effects. The low value for reproduction number indicates that transmissibility was moderately low.
ContributorsJenner, Melinda Eva (Author) / Chowell-Puente, Gerardo (Thesis director) / Kostelich, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
147577-Thumbnail Image.png
Description

Following the Global Financial Crisis of 2007-2008, financial institutions faced regulatory changes due to inherent weaknesses that were exposed by the recession. Within the United States, regulation came via the passing of the Dodd-Frank Wall Street Reform and Consumer Protection Act in 2010, which was heavily influenced by the internationally

Following the Global Financial Crisis of 2007-2008, financial institutions faced regulatory changes due to inherent weaknesses that were exposed by the recession. Within the United States, regulation came via the passing of the Dodd-Frank Wall Street Reform and Consumer Protection Act in 2010, which was heavily influenced by the internationally focused Basel III accord. A key component to both of these sets of regulations focused on raising the capital requirements for financial institutions, as well as creating capital buffers to help protect solvency during economic downturns in the future. The goal of this study is to evaluate the effectiveness of these changes to capital requirements, and to hypothesize as to what would happen if the modern banking system experienced the COVID-19 pandemic recession with the capital and leverage levels of the banking institutions circa 2007. To accomplish this, data from the Federal Reserve describing the capital and leverage ratios of the banking industry will be evaluated during both the Global Financial Crisis of 2007-2008, as well as during the COVID-19 Recession. Specifically, we will look at by how much capital was improved due to Dodd-Frank/Basel III, the resiliency of the capital and leverage ratios during the modern COVID-19 recession, and we will look at the average drop in capital levels caused by the COVID-19 recession and apply these percentage changes to the leverage/capital levels seen in 2007. Given the results, it is clear to see that the change in capital requirements along with the counter-cyclical buffers described in Dodd-Frank and Basel III allowed the banking system to function throughout the COVID recession without approaching insolvency in the slightest, something that ailed many large banks and firms during the Global Financial Crisis. As an answer to our hypothetical, we found that the drop seen affecting the measures of bank capital experienced during the COVID pandemic when applied to values seen at the beginning of the 2007 recession still led to a well-capitalized banking industry as a whole, highlighting the resiliency seen during the COVID recession thanks to the capital buffers put in place, as well as the direct assistance provided by the federal government (via PPP loans and stimulus checks) and the Federal Reserve in keeping the hit on capital to minimal values throughout the pandemic.

ContributorsMiner, Jackson J (Author) / McDaniel, Cara (Thesis director) / Wong, Kelvin (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

COVID-19 misinformation covers a wide range of topics such as fatality rate, mask effectiveness, potential cures, vaccine development, and the idea of a "plandemic". The spread of this misinformation happens at a rapid speed with the help of social media and powerful influencers, including major political figures. This thesis is

COVID-19 misinformation covers a wide range of topics such as fatality rate, mask effectiveness, potential cures, vaccine development, and the idea of a "plandemic". The spread of this misinformation happens at a rapid speed with the help of social media and powerful influencers, including major political figures. This thesis is a focused case study on hydroxychloroquine, and builds a timeline of the misinformation surrounding the drug. From poorly conducted studies to the use of false experts, this study reveals how politicized misinformation garners more public attention than the actual science.

ContributorsPitts, Benjamin Jack (Author) / Ingram-Waters, Mary (Thesis director) / Hurlbut, Ben (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148485-Thumbnail Image.png
Description

The COVID-19 pandemic has and will continue to radically shift the workplace. An increasing percentage of the workforce desires flexible working options and, as such, firms are likely to require less office space going forward. Additionally, the economic downturn caused by the pandemic provides an opportunity for companies to secure

The COVID-19 pandemic has and will continue to radically shift the workplace. An increasing percentage of the workforce desires flexible working options and, as such, firms are likely to require less office space going forward. Additionally, the economic downturn caused by the pandemic provides an opportunity for companies to secure favorable rent rates on new lease agreements. This project aims to evaluate and measure Company X’s potential cost savings from terminating current leases and downsizing office space in five selected cities. Along with city-specific real estate market research and forecasts, we employ a four-stage model of Company X’s real estate negotiation process to analyze whether existing lease agreements in these cities should be renewed or terminated.

ContributorsSaker, Logan (Co-author) / Ries, Sarah (Co-author) / Hegardt, Brandon (Co-author) / Patterson, Jack (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131662-Thumbnail Image.png
Description
The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å,

The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å, and [S II] 6720 Å to compare with Hubble Space Telescope observations of the HH 901 jets presented in Reiter et al. (2016). We derived the emissivities for these lines from the spectral synthesis code Cloudy by Ferland et al. (2017). In addition, we used WENO simulations of density, temperature, and radiative cooling to model the jet. We found that the computed surface brightness values agreed with most of the observational surface brightness values. Thus, the 3D cylindrically symmetric simulations of surface brightness using the WENO code and Cloudy spectral emission models are accurate for jets like HH 901. After detailing these agreements, we discuss the next steps for the project, like adding an external ambient wind and performing the simulations in full 3D.
ContributorsMohan, Arun (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05