Matching Items (234)
Filtering by

Clear all filters

136749-Thumbnail Image.png
Description
The thesis document describes in detail the decision making process and research that went into each step in the process of designing, coding, launching, and marketing a mobile game. This includes major challenges and methodologies for overcoming them or changing course as well as significant revisions that were made to

The thesis document describes in detail the decision making process and research that went into each step in the process of designing, coding, launching, and marketing a mobile game. This includes major challenges and methodologies for overcoming them or changing course as well as significant revisions that were made to the game upon receiving market and user feedback. The game, Sheep In Space, was launched on to the Windows Phone 8 marketplace initially via the use of the GameMaker: Studio game engine. From there, following a series of revisions Sheep In Space launched on the Android marketplace and has been undergoing further changes before the final launch to iOS. The revision and launch strategy was determined based off of market feedback from a variety of facets, including direct word of mouth, reviews, downloads, analytics data, and social media reaction.
Created2014-12
136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
This report is intended to serve as a comprehensive resource for parents, teachers and community members who are interested in learning more about the emergence, direction and scope of the computer science education movement. Many K-12 school districts begun to develop and facilitate their own computer science education programs, often

This report is intended to serve as a comprehensive resource for parents, teachers and community members who are interested in learning more about the emergence, direction and scope of the computer science education movement. Many K-12 school districts begun to develop and facilitate their own computer science education programs, often in the form of extracurricular clubs and classes. However, third-party businesses play a significant role in supplementing classrooms with software and hardware products, professional development services, and instruction services. This report explores the complexity of the computer science education environment by exploring the movement of advocacy for increasing computer science in K-12 schools and analyzing the emergent competitive landscape of for-profit and non-profit businesses. Additionally, the report offers insight to the computer science education landscape in Arizona through the lens of the research study "Computer Science Education in Maricopa County Public School Districts for K-8 Students." This study presents the findings from in-depth interviews with educators about how school-based computer science programs are structured and how they are received by students, parents and teachers. The report also offers broad recommendations for school programs, analyzes the potential for a national model, and discusses next steps for states, businesses and individuals. Keywords: computer science education, K-12 schools, public education, coding, Code.org, Hour of Code
ContributorsCampbell, Amy Rose (Author) / Ostrom, Amy (Thesis director) / Giles, Bret (Committee member) / W. P. Carey School of Business (Contributor) / Department of Marketing (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147879-Thumbnail Image.png
Description

Extreme heat is the deadliest weather and climate-related hazard in the United States, and the threat it poses to urban residents is rising. City planners increasingly recognize these risks and are taking action to mitigate them. However, the COVID-19 pandemic has disrupted many plans. Building on a

Extreme heat is the deadliest weather and climate-related hazard in the United States, and the threat it poses to urban residents is rising. City planners increasingly recognize these risks and are taking action to mitigate them. However, the COVID-19 pandemic has disrupted many plans. Building on a previous survey which queried city planners from across the United States about how concerned they were about extreme heat, and their heat management efforts. This thesis examines how these perceptions and efforts have changed in the face of the COVID-19 pandemic. In general, it was found that public spaces which would typically have been used to shelter individuals from extreme heat conditions were closed to mitigate close-contact and to encourage social distancing. Furthermore, priorities were changed as the presence of the virus became commonplace, with plans being altered, delayed, or shelved to diverge more time and effort towards the crisis at hand. Working environments and conditions also changed, which in several cases led to technological shortcomings, resulting in further delays. Finally, most planners had attained a surface-level understanding of which socio-economic groups were most impacted by both COVID-19 and extreme heat, in congruence with the current literature written on the topic. Generally, it appears that planners feel that the impact of COVID-19 on heat planning efforts has been limited.

ContributorsNorris, Walker Yale (Author) / Meerow, Sara (Thesis director) / Keith, Ladd (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147893-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsQian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / English, Corinne (Co-author) / Agee, Claire (Co-author) / Mattson, Kyle (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147895-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsEnglish, Corinne (Co-author) / Cosgrove, Samuel (Co-author) / Mattson, Kyle (Co-author) / Agee, Claire (Co-author) / Qian, Michael (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147906-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsAgee, Claire (Co-author) / English, Corinne (Co-author) / Mattson, Kyle (Co-author) / Qian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147907-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsMattson, Kyle (Co-author) / Agee, Claire (Co-author) / English, Corinne (Co-author) / Cosgrove, Samuel (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Marketing (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148381-Thumbnail Image.png
Description

Healthcare facilities are essential for any community, and they must stay up-to-date with the latest equipment and technology. They provide necessary resources for keeping populations healthy and safe. In order to provide healthcare services, these healthcare facilities must be adequately equipped with appropriate physical capital as well as software to

Healthcare facilities are essential for any community, and they must stay up-to-date with the latest equipment and technology. They provide necessary resources for keeping populations healthy and safe. In order to provide healthcare services, these healthcare facilities must be adequately equipped with appropriate physical capital as well as software to meet the demands of their patients. Healthcare capital equipment planning involves building up a facility with all it’s equipment and is a part of the healthcare supply chain. Attainia is a healthcare capital equipment planning software used to assist equipment planners in organizing the procurement of equipment for their projects. Attainia has a large amount of data about the capital equipment supply chain through the Attainia equipment catalog. Analysis of this catalog data reveals different patterns in the spending patterns of capital equipment planners as well as trends in the supplier offerings. Since Attainia itself is a software, Attainia’s users have experience with implementing and integrating software into healthcare IT solutions. Their experiences give some insight into the complex nature of software implementations at healthcare facilities. The COVID-19 pandemic has affected healthcare facilities all over the world. Impacting the supply chain and hitting hospitals’ finances, COVID-19 has drastically changed many parts of the healthcare system. This paper will examine some of these ongoing effects from COVID-19 along with analysis on capital equipment planning, supply chain, and healthcare software implementation.

ContributorsShah, Shailee (Author) / Pye, Jessica (Thesis director) / Roumina, Kavous (Committee member) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05