Matching Items (5)
Filtering by

Clear all filters

148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165245-Thumbnail Image.png
Description
This paper explores the idea that time is physically and mentally stolen from employees by their employers. Employees are exploited by employers for monetary gain. By using the works of critical theorists such as EP Thompson, Herbert Marcuse and Karl Marx, this paper synthesizes how their theories applied to contemporary

This paper explores the idea that time is physically and mentally stolen from employees by their employers. Employees are exploited by employers for monetary gain. By using the works of critical theorists such as EP Thompson, Herbert Marcuse and Karl Marx, this paper synthesizes how their theories applied to contemporary society. Overall, this paper works to understand the progression of the exploitation of employees as well as the contemporary issues surrounding a 40 hour work week and the thievery of physical and mental time.
ContributorsBozzano, Alexa (Author) / Hines, Taylor (Thesis director) / Koker, Neveser (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2022-05
Description

This study investigates whether an experience as a novice can help alleviate expert blindness in Arizona State University faculty. Expert blindness, also known as the expert blind spot, is a phenomenon in which an expert in any subject finds it difficult to teach because they are so advanced at it.

This study investigates whether an experience as a novice can help alleviate expert blindness in Arizona State University faculty. Expert blindness, also known as the expert blind spot, is a phenomenon in which an expert in any subject finds it difficult to teach because they are so advanced at it. Many faculty have taught the same subject for so long that certain things that are difficult for beginners in their courses are trivial for the expert. In this experiment, ASU faculty were given five weeks of instruction to learn to solve the Rubik’s Cube in five minutes or less. Before and after the five-week experience, the participants took the Interpersonal Reactivity Index assessment, which measures empathy. Throughout the Rubik’s Cube challenge, the faculty were also asked discussion questions and invited to participate in informal interviews. The study finds a significant increase in the “empathic concern” of the participants after the experience, with a sample size of five participants. The qualitative interview data confirms the survey data, and the main sentiments of the professors after going through the experience were distilled into four main themes: (a) patience and reflection; (b) individualized approaches; (c) trying, failing, and improving; (d) knowing what and when to explain. An effective teacher who is aware of their tendency towards expert blindness should be aware of these four themes and strive to include them in their own teaching. The study recommends that universities and companies should have “beginner experiences” at regular intervals to remind experts what it is like to be a beginner again. These experiences not only mitigate the expert blind spot but promote lifelong learning and an active brain.

ContributorsLarson, Paul (Author) / Middleton, James (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
131750-Thumbnail Image.png
Description
A one-way function (OWF) is a function that is computationally feasible to compute in one direction, but infeasible to invert. Many current cryptosystems make use of properties of OWFs to provide ways to send secure messages. This paper reviews some simple OWFs and examines their use in contemporary cryptosystems and

A one-way function (OWF) is a function that is computationally feasible to compute in one direction, but infeasible to invert. Many current cryptosystems make use of properties of OWFs to provide ways to send secure messages. This paper reviews some simple OWFs and examines their use in contemporary cryptosystems and other cryptographic applications. This paper also discusses the broader implications of OWF-based cryptography, including its relevance to fields such as complexity theory and quantum computing, and considers the importance of OWFs in future cryptographic development
ContributorsMcdowell, Jeremiah Tenney (Author) / Hines, Taylor (Thesis director) / Foy, Joseph (Committee member) / Sprung, Florian (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05