Matching Items (5)
Filtering by

Clear all filters

152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
135876-Thumbnail Image.png
Description
Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have developed such an in-depth means of auditory communication. Recreating the mechanisms in the brain that recognize speech patterns is no

Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have developed such an in-depth means of auditory communication. Recreating the mechanisms in the brain that recognize speech patterns is no easy task. This paper compares and contrasts various algorithms used in modern day ASR systems, and focuses primarily on ASR systems in resource constrained environments. The Green colored blocks in Figure 1 will be focused on in greater detail throughout this paper, they are the key to building an exceptional ASR system. Deep Neural Networks (DNNs) are the clear and current leader among ASR technologies; all research in this field is currently revolving around this method. Although DNNs are very effective, many older methods of ASR are used often due to the complexities involved with DNNs; these difficulties include the large amount of hardware resources as well as development resources, such as engineers and money, required for this method.
ContributorsPetersen, Casey Alexander (Author) / Csavina, Kristine (Thesis director) / Pollat, Scott (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148076-Thumbnail Image.png
Description

Through research, interviews, and analysis, our paper provides the local community with a resource that offers a comprehensive collection of insight into the Mirabella at ASU Life Plan Community and the projected impact it will have on the City of Tempe and Arizona State University.

ContributorsStephens, Corey Christopher (Co-author) / Dicke, George (Co-author) / Anand, Rohan (Co-author) / Sadusky, Brian (Thesis director) / Schiller, Christoph (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148008-Thumbnail Image.png
Description

Through research, interviews, and analysis, our paper provides the local community with a resource that offers a comprehensive collection of insight into the Mirabella at ASU Life Plan Community and the projected impact it will have on the City of Tempe and Arizona State University.

ContributorsAnand, Rohan (Co-author) / Dicke, George (Co-author) / Stephens, Corey (Co-author) / Sadusky, Brian (Thesis director) / Schiller, Christoph (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
164739-Thumbnail Image.png
Description
Homeownership is an essential part of the American Dream and one of the most important tools for anyone in the 21st century to build wealth. Unfortunately, the COVID-19 pandemic has introduced a level of uncertainty to a market that has been largely stable since the last recession. This has proven

Homeownership is an essential part of the American Dream and one of the most important tools for anyone in the 21st century to build wealth. Unfortunately, the COVID-19 pandemic has introduced a level of uncertainty to a market that has been largely stable since the last recession. This has proven to be a major roadblock affecting multiple generations of Americans in their quests to develop wealth. A particularly interesting case study through this crisis has been the housing market of Phoenix Arizona. When the challenges presented by the pandemic began to unfold, thousands of home listings and sales were canceled all the while newly unemployed Arizonians began to worry about meeting their mortgage payments. However, this disruption didn’t last long, several months after the beginning of the pandemic housing prices quickly began to swell. Many listings continue to be sold for tens of thousands of dollars above the asking price which has led investors to ask: how have Phoenix homes been able to seemingly ignore the economic downturn? Today we are living in the hottest housing market since early 2007, and many expert opinions on the state of the market conflict with one another. Some expect housing prices to crash, others believe this growth is sustainable. A complex web of interconnected financial and human systems has led us to the position we are in today and several important questions have been left unanswered. What forces have driven the market to such dramatic heights? Who have been the winners and losers in the Arizona housing market during the pandemic? And what can be expected to happen in the near future as the “new normal” served to us by COVID-19 unfolds? The purpose of this thesis is to explore these questions and identify the underlying factors that have created the current market conditions. It will begin with an analysis of relevant supply and demand factors, then move to identify groups of winners and losers, to finally develop a prescriptive outlook for challenges facing Phoenix’s housing market.
ContributorsEllerd, Wyatt (Author) / Sadusky, Brian (Thesis director) / Hoffman, David (Committee member) / Barrett, The Honors College (Contributor) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2022-05