Matching Items (6)
Filtering by

Clear all filters

136176-Thumbnail Image.png
Description
Joseph Rotblat (1908-2005) was the only physicist to leave the Manhattan Project for moral reasons before its completion. He would spend the rest of his life advocating for nuclear disarmament. His activities for disarmament resulted in the formation, in 1957, of the Pugwash conferences, which emerged as the leading global

Joseph Rotblat (1908-2005) was the only physicist to leave the Manhattan Project for moral reasons before its completion. He would spend the rest of his life advocating for nuclear disarmament. His activities for disarmament resulted in the formation, in 1957, of the Pugwash conferences, which emerged as the leading global forum to advance limits on nuclear weapons during the Cold War. Rotblat's efforts, and the activities of Pugwash, resulted in both being awarded the Nobel Peace Prize in 1995. Rotblat is a central figure in the global history of resistance to the spread of nuclear weapons. He also was an important figure in the emergence, after World War II, of a counter-movement to introduce new social justifications for scientific research and new models for ethics and professionalism among scientists. Rotblat embodies the power of the individual scientist to say "no" and thus, at least individually, put limits of conscience on his or her scientific activity. This paper explores the political and ethical choices scientists make as part of their effort to behave responsibly and to influence the outcomes of their work. By analyzing three phases of Rotblat's life, I demonstrate how he pursued his ideal of beneficial science, or science that appears to benefit humanity. The three phases are: (1) his decision to leave the Manhattan Project in 1944, (2) his role in the creation of Pugwash in 1957 and his role in the rise of the organization into international prominence and (3) his winning the Nobel Peace Prize in 1995. These three phases of Rotblat's life provide a singular window of the history of nuclear weapons and the international movement for scientific responsibility in the 50 years since the bombing of Hiroshima in 1945. While this paper does not provide a complete picture of Rotblat's life and times, I argue that his experiences shed important light on the difficult question of the individual responsibility of scientists.
ContributorsEvans, Alison Dawn (Author) / Zachary, Gregg (Thesis director) / Hurlbut, Ben (Committee member) / Francis, Sybil (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2015-05
137213-Thumbnail Image.png
Description
This thesis aims to address the ethics of keeping the big cats, such as lions, tigers, and leopards, in zoos. It is a practice that has generated some controversy in light of scientific studies reporting stress among wide-ranging animals in captive enclosures, as well as in the context of wider

This thesis aims to address the ethics of keeping the big cats, such as lions, tigers, and leopards, in zoos. It is a practice that has generated some controversy in light of scientific studies reporting stress among wide-ranging animals in captive enclosures, as well as in the context of wider discussions in animal welfare and conservation ethics in zoos. A driving question for this project, therefore, was "What are the arguments for and against keeping large felids in zoos/captivity?" This thesis examines the historical and current ethical approaches to evaluating the ethics of maintaining big cats in zoos. Due to many of the big cat species listed as endangered species on the IUCN redlist, the species-centered approach to zoo ethics is becoming the common viewpoint, and, as a result, zoos are deemed ethical because of their contribution to ex situ conservation practices. Further, the ethical arguments against zoos are minimized when the zoos provide suitable and appropriate enclosures for their large felids. Of course, not all zoos are created equal; the ethics of zoos need to be evaluated on a case-by-case basis, but in general, it is ethical to maintain big cats in zoos.
ContributorsZeien, Krista Marie (Author) / Minteer, Ben (Thesis director) / Smith, Andrew (Committee member) / Ellison, Karin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
136072-Thumbnail Image.png
Description
The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money

The prospect of anti-aging or life extension technology is controversial in biogerentology but deemed even by skeptical experts to warrant discussion. I discuss the justifications that the probability of life extension technology being developed in the near future is reasonably high and that this research justifies the time and money it receives. I investigate potential ethical and societal issues anti-aging technology might create. This paper addresses inequality of access, economic cost, changes in quality of life, the role of death in human life, if and how the technology should be regulated and how parties who choose not to undergo treatment can be fairly treated, even when they are a minority.
Created2015-05
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05