Matching Items (21)
Filtering by

Clear all filters

151116-Thumbnail Image.png
Description
Professional environmental scientists are increasingly under pressure to inform and even shape policy. Scientists engage policy effectively when they act within the bounds of objectivity, credibility, and authority, yet significant portions of the scientific community condemn such acts as advocacy. They argue that it is nonobjective, that it risks damaging

Professional environmental scientists are increasingly under pressure to inform and even shape policy. Scientists engage policy effectively when they act within the bounds of objectivity, credibility, and authority, yet significant portions of the scientific community condemn such acts as advocacy. They argue that it is nonobjective, that it risks damaging the credibility of science, and that it is an abuse of authority. This means objectivity, credibility, and authority deserve direct attention before the policy advocacy quagmire can be reasonably understood. I investigate the meaning of objectivity in science and that necessarily brings the roles of values in science into question. This thesis is a sociological study of the roles environmental values play in the decisions of environmental scientists working in the institution of academia. I argue that the gridlocked nature of the environmental policy advocacy debates can be traced to what seems to be a deep tension and perhaps confusion among these scientists. I provide empirical evidence of this tension and confusion through the use of in depth semi-structured interviews among a sampling of academic environmental scientists (AES). I show that there is a struggle for these AES to reconcile their support for environmentalist values and goals with their commitment to scientific objectivity and their concerns about being credible scientists in the academy. Additionally, I supplemented my data collection with environmental sociology and history, plus philosophy and sociology of science literatures. With this, I developed a system for understanding values in science (of which environmental values are a subset) with respect to the limits of my sample and study. This examination of respondent behavior provides support that it is possible for AES to act on their environmental values without compromising their objectivity, credibility, and authority. These scientists were not likely to practice this in conversations with colleagues and policy-makers, but were likely to behave this way with students. The legitimate extension of this behavior is a viable route for continuing to integrate the human and social dimensions of environmental science into its practice, its training, and its relationship with policy.
ContributorsAppleton, Caroline (Author) / Minteer, Ben (Thesis advisor) / Chew, Matt (Committee member) / Armendt, Brad (Committee member) / Arizona State University (Publisher)
Created2012
135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137213-Thumbnail Image.png
Description
This thesis aims to address the ethics of keeping the big cats, such as lions, tigers, and leopards, in zoos. It is a practice that has generated some controversy in light of scientific studies reporting stress among wide-ranging animals in captive enclosures, as well as in the context of wider

This thesis aims to address the ethics of keeping the big cats, such as lions, tigers, and leopards, in zoos. It is a practice that has generated some controversy in light of scientific studies reporting stress among wide-ranging animals in captive enclosures, as well as in the context of wider discussions in animal welfare and conservation ethics in zoos. A driving question for this project, therefore, was "What are the arguments for and against keeping large felids in zoos/captivity?" This thesis examines the historical and current ethical approaches to evaluating the ethics of maintaining big cats in zoos. Due to many of the big cat species listed as endangered species on the IUCN redlist, the species-centered approach to zoo ethics is becoming the common viewpoint, and, as a result, zoos are deemed ethical because of their contribution to ex situ conservation practices. Further, the ethical arguments against zoos are minimized when the zoos provide suitable and appropriate enclosures for their large felids. Of course, not all zoos are created equal; the ethics of zoos need to be evaluated on a case-by-case basis, but in general, it is ethical to maintain big cats in zoos.
ContributorsZeien, Krista Marie (Author) / Minteer, Ben (Thesis director) / Smith, Andrew (Committee member) / Ellison, Karin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137395-Thumbnail Image.png
Description
Attitudes toward animal welfare have been evolving in our society as we have developed from early agricultural roots to an increasingly urban and technologically advanced community. However, despite the growing societal appreciation and care for animals in our homes and backyards, veterinarians are still faced with cases of abuse and

Attitudes toward animal welfare have been evolving in our society as we have developed from early agricultural roots to an increasingly urban and technologically advanced community. However, despite the growing societal appreciation and care for animals in our homes and backyards, veterinarians are still faced with cases of abuse and neglect. Although it may seem obvious for veterinarians, as animal welfare advocates, to confront this dilemma each time they are faced with it, that is not always the case. In order to assess the responsibilities of veterinarians in regard to neglect and abuse, an extensive literature review and analysis was performed and practicing veterinarians were interviewed to determine their attitudes regarding the responsibility to report suspected cases of animal neglect and abuse. Specifically, these interviews focused on such topics as the educational background of the practitioners, how empathy impacts their perception of animal welfare, their relationship with law enforcement agencies, and related questions. The study demonstrated that the most prominent factor in a veterinarian's understanding of violations of animal welfare stems from their educational background. Therefore, it is recommended that veterinary medicine programs alter their curricula to emphasize animal welfare training and the obligation of veterinarians to report suspected cases of neglect and abuse.
ContributorsMichael, Allison Therese (Author) / Minteer, Ben (Thesis director) / Ellison, Karin (Committee member) / DeNardo, Dale (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-12
137147-Thumbnail Image.png
Description
Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance,

Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance, and cell culture growth assays were used to characterize the physical, magnetic, and cytotoxic properties of candidate nanoprobes. The nanoprobes displayed thermosensitve MR properties with decreasing relaxivity with temperature. Future work will be focused on generating and characterizing photo-active analogues of the nanoprobes that could be used for both treatment of tissues and assessment of therapy.
ContributorsHussain, Khateeb Hyder (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134481-Thumbnail Image.png
Description
Bottlenose dolphins, or Tursiops truncates, have captured the attention of humans for centuries leading people to keep them in captivity. However, people's love and an increase in knowledge for these creatures have sparked many ethical debates on whether dolphins should be kept in captivity. In this paper, I discuss the

Bottlenose dolphins, or Tursiops truncates, have captured the attention of humans for centuries leading people to keep them in captivity. However, people's love and an increase in knowledge for these creatures have sparked many ethical debates on whether dolphins should be kept in captivity. In this paper, I discuss the different dimensions of bottlenose dolphin captivity focusing on the physiological, psychological, ecological and ethical concerns raised when comparing captive to wild bottlenose dolphins. In an analysis of the scientific literature, I found that captive bottlenose dolphins experience negative physical and psychological effects, including a shorter life span and a decrease in brain size. They also engage in more risky and harmful behaviors. Preexisting brain structures in bottlenose dolphins indicate enhanced emotional processing possibly leading to a more difficult life in captivity. Furthermore, modeling of bottlenose dolphin social networks have found that removal of dolphins from existing populations have negative repercussions for ecological communities, particularly effecting present and future pods due to their complex social systems called fission fusion societies. Furthermore, removal can have a deleterious effect on the environment due to their role as top predators. Available data suggest that bottlenose dolphins should be classified as non-human persons due to their cognitive abilities such as self-awareness, intentionality, creativity, and symbolic communication. This moral classification demands significant human duties and responsibilities to protect these cetaceans. Due to their similarities to humans, these results suggest that keeping bottlenose dolphins in captivity is ethically questionable and perhaps unjustifiable as captivity violates their basic rights.
ContributorsCoonrod, Sarah Mae (Author) / Gerber, Leah (Thesis director) / Smith, Andrew (Committee member) / Minteer, Ben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132964-Thumbnail Image.png
Description
In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.
ContributorsHumphreys, Zachary William (Author) / Kodibagkar, Vikram (Thesis director) / Foldes, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133148-Thumbnail Image.png
Description
At Arizona State University (ASU), there is a perceived lack of interdisciplinary symposiums for student presenters and a lack of understanding about the university's "#1 in Innovation" title awarded by U.S. News & World report. In addition, ASU focuses on advertising innovation in a few select fields, such as astronomy

At Arizona State University (ASU), there is a perceived lack of interdisciplinary symposiums for student presenters and a lack of understanding about the university's "#1 in Innovation" title awarded by U.S. News & World report. In addition, ASU focuses on advertising innovation in a few select fields, such as astronomy and space exploration. To address these issues, a team of Lincoln Undergraduate Scholars planned an Ethics & Innovation Symposium with the theme of "Defining Our Future" for April 11, 2018. I chose to conduct a post-event analysis of logistics, successes, and failures. This additional evaluation was meant to serve as a measure of the symposium's sustainability for future years. This thesis addresses the methods of event planning (incl. marketing, gathering student presenters, catering, room reservation), results, and analysis of outcomes specifically for the Ethics & Innovation Symposium. Overall, the thesis document will benefit anyone interested in planning some event at the university level. Additional reference documents are included in this report to provide help with creating a general checklist, developing marketing deliverables, and contacting university departments/organizations.
ContributorsJagadish, Ishitha (Author) / Coursen, Jerry (Thesis director) / Kenney, Sean (Committee member) / O'Neil, Erica (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134926-Thumbnail Image.png
Description
The International Dyslexia Association defines dyslexia as a learning disorder that is characterized by poor spelling, decoding, and word recognition abilities. There is still no known cause of dyslexia, although it is a very common disability that affects 1 in 10 people. Previous fMRI and MRI research in dyslexia has

The International Dyslexia Association defines dyslexia as a learning disorder that is characterized by poor spelling, decoding, and word recognition abilities. There is still no known cause of dyslexia, although it is a very common disability that affects 1 in 10 people. Previous fMRI and MRI research in dyslexia has explored the neural correlations of hemispheric lateralization and phonemic awareness in dyslexia. The present study investigated the underlying neurobiology of five adults with dyslexia compared to age- and sex-matched control subjects using structural and functional magnetic resonance imaging. All subjects completed a large battery of behavioral tasks as part of a larger study and underwent functional and structural MRI acquisition. This data was collected and preprocessed at the University of Washington. Analyses focused on examining the neural correlates of hemispheric lateralization, letter reversal mistakes, reduced processing speed, and phonemic awareness. There were no significant findings of hemispheric differences between subjects with dyslexia and controls. The subject making the largest amount of letter reversal errors had deactivation in their cerebellum during the fMRI language task. Cerebellar white matter volume and surface area of the premotor cortex was the largest in the individual with the slowest reaction time to tapping. Phonemic decoding efficiency had a high correlation with neural activation in the primary motor cortex during the fMRI motor task (r=0.6). Findings from the present study suggest that brain regions utilized during motor control, such as the cerebellum, premotor cortex, and primary motor cortex, may have a larger role in dyslexia then previously considered. Future studies are needed to further distinguish the role of the cerebellum and other motor regions in relation to motor control and language processing deficits related to dyslexia.
ContributorsHoulihan, Chloe Carissa Prince (Author) / Rogalsky, Corianne (Thesis director) / Peter, Beate (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12