Matching Items (36)
Filtering by

Clear all filters

131157-Thumbnail Image.png
Description
Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment.

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.
ContributorsSchreck, Joshua Reuben (Author) / Varsani, Arvind (Thesis director) / Rolf, Halden (Committee member) / Misra, Rajeev (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132583-Thumbnail Image.png
Description
Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells

Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells during normal inflammation response, which induces chemotactic migration of immune cells to the site. High expression of CXCL10 has been implicated in aggressive breast cancer, but the mechanism is not well understood. A potential signaling molecule downstream of Cxcl10 is Janus Kinase 2 (Jak2), a kinase activated in normal immune response. Deregulation of Jak2 is associated with metastasis, immune evasion, and tumor progression in breast cancer. Thus, we hypothesized that the Ing4/Cxcl10/Jak2 axis plays a key role in breast cancer progression. We first investigated whether Cxcl10 affected breast cancer cell migration. We also investigated whether Cxcl10-mediated migration is dependent on ING4 expression levels. We utilized genetically engineered MDAmb231 breast cancer cells with a CRISPR/Cas9 ING4-knockout construct or a viral ING4 overexpression construct. We performed Western blot analysis to confirm Ing4 expression. Cell migration was assessed using Boyden Chamber assay with or without exogenous Cxcl10 treatment. The results showed that in the presence of Cxcl10, ING4-deficient cells had a two-fold increase in migration as compared to the vector controls, suggesting Ing4 inhibits Cxcl10-induced migration. These findings support our hypothesis that ING4-deficient tumor cells have increased migration when Cxcl10 signaling is present in breast cancer. These results implicate Ing4 is a key regulator of a chemokine-induced tumor migration. Our future plan includes evaluation of Jak2 as an intermediate signaling molecule in Cxcl10/Ing4 pathway. Therapeutic implications of these findings are targeting Cxcl10 and/or Jak2 may be effective in treating ING4-deficient aggressive breast cancer.
ContributorsArnold, Emily (Author) / Kim, Suwon (Thesis director) / Blattman, Joseph (Thesis director) / Mason, Hugh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132678-Thumbnail Image.png
Description
Cytokines induced by inflammasome has been used for blood cancer treatments, yet these treatments have been less successful in the solid tumor microenvironment. Here precise-morphology DNA origami structures were implemented to accurately test the effect and mechanism of activation in the NLRP3 inflammasome. THP1 WT cells, a macrophage cell line,

Cytokines induced by inflammasome has been used for blood cancer treatments, yet these treatments have been less successful in the solid tumor microenvironment. Here precise-morphology DNA origami structures were implemented to accurately test the effect and mechanism of activation in the NLRP3 inflammasome. THP1 WT cells, a macrophage cell line, were treated with eleven different DNA origami structures. The inflammasome activation of two cytokines, Interleukin 1 beta (IL-1β) and Interferon beta (IFN-β), was measured using HEK Blue IL-1β cells, HEK Blue IFN-β cells, and enzyme linked immunosorbent assay (ELISA). Differences in activation signaling have the potential to provide the characterization required to address the intrinsic complexity of modulating an immune response. It is hoped that DNA origami will help induce more inflammation for solid tumors. The DNA origami was tested in three different volumes: 1 μL, 5 μL, and 10 μL. Overall, the origami that showed promising results were Mg Square. Tetrahedral and P53 block also showed potential but not as well as Mg square. Further testing of more DNA origami structures and testing them in mice are key to the success of targeted cancer immunotherapies in the neoadjuvant setting.
ContributorsGreenwald, Elinor Vera (Co-author) / Ariola, Amanda (Co-author) / Ning, Bo (Thesis director) / Zhang, Fei (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132429-Thumbnail Image.png
Description
In vitro gametogenesis (IVG) research has been growing in countries like Japan, US, and China after the development of stem cell research and other scientific advancements as well as because of the perception of infertility as a domestic and international problem. IVG research’s progress has been deliberated internationally, with discussion

In vitro gametogenesis (IVG) research has been growing in countries like Japan, US, and China after the development of stem cell research and other scientific advancements as well as because of the perception of infertility as a domestic and international problem. IVG research’s progress has been deliberated internationally, with discussion of questions, challenges, and possibilities that have arisen and may arise in the future as the technology is adopted by different countries. The first section introduces the meaning of IVG, explains the importance of review by scientists and citizens for IVG, and describes a rise in infertility reported in multiple developed countries that could be addressed by IVG. The second section discusses IVG’s applications and implications using 5 ethical categories articulated by Obama’s Presidential Commission for the Study of Bioethical Issues: Public Beneficence, Responsible Stewardship, Intellectual Freedom and Responsibility, Democratic Deliberation, and Justice and Fairness. These five ethical principles were intended for analysis of emerging technologies, and IVG is an emerging technology with possible integration into clinical settings. Among the principles, it seemed that a major weak point of inquiry concerns LGBT+ and disability inclusion, especially of gender dysphoric and transgender people who may experience higher rates of infertility and have a harder time conceiving due to a mix of discrimination, gender dysphoria, and infertility due to hormone replacement therapy (HRT) treatment or gender/sex reassignment surgeries (GRSs/SRSs) that may impair or remove reproductive body parts. A number of other ethical considerations arise about this technology.
ContributorsVillarreal, Lance Edward (Author) / Maienschein, Jane (Thesis director) / Ellison, Karin (Committee member) / Wilson-Rawls, Jeanne (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131109-Thumbnail Image.png
Description
When an individual is conceived there is a metaphorical roll of the dice. A game of chance is played with their genetics to which they cannot consent. Unlucky players could have inherited mild conditions such as chronic allergies to terrible diseases such as Cystic Fibrosis or Tay-Sachs. Controlling the genetics

When an individual is conceived there is a metaphorical roll of the dice. A game of chance is played with their genetics to which they cannot consent. Unlucky players could have inherited mild conditions such as chronic allergies to terrible diseases such as Cystic Fibrosis or Tay-Sachs. Controlling the genetics of an individual through the use of gene editing technology could be the key to ending this cycle of genetic diseases. Once detrimental diseases are now being cured through direct applications of genetic engineering. Even as we see the uses of genetic engineering technologies change the world, the more “sci-fi” applications have yet to be fully realized or explored. Editing hereditary genes before birth may have the ability to eliminate diseases from entire genetic lines, reduce the possibility for certain cancers and diseases, and perhaps even modify phenotypes in humans to create enhanced humans. Although this scientific field shows promise, it does have its reservations. Like any other scientific field, its ability to benefit humanity depends on its use.
ContributorsSchuler, Jacob (Co-author) / Silva, Anthony (Co-author) / Brian, Jennifer (Thesis director) / Ross, Christian (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164512-Thumbnail Image.png
Description
As general awareness and concern for environmental issues has increased over time, so has the growth of environmental artwork. Artworks in this genre have been used with the intent to motivate conservation action and environmental justice action, as well as spread broader environmental awareness. Different approaches to environmental messages may

As general awareness and concern for environmental issues has increased over time, so has the growth of environmental artwork. Artworks in this genre have been used with the intent to motivate conservation action and environmental justice action, as well as spread broader environmental awareness. Different approaches to environmental messages may have varying impacts on viewers’ beliefs and attitudes related to the environment. Yet this topic is still not widely studied. Using a combination of survey and interview techniques, this thesis examines the intersection of art, ethics, and the environment by eliciting the reactions and responses of Arizona State University students to various environmental artworks. The study design presented groups of students with differing imagery, one set categorized as environmentally hopeful or positive, the other as environmentally gloomy or negative. The New Ecological Paradigm scale (NEP) was used as a measure for ethical views. After exposure to the artworks, students showed shifts in their NEP scores in both directions, and some had no change. Between positive and negative artworks, there was no significant difference in change in score on the NEP scale. The results of the thesis inspired a suggestion for a new scale to describe an emerging environmental ethic that is evidenced by the artworks, artists statements, and student reactions in this project: the Social And Ecological Paradigm (SAEP). The paradigm abbreviation includes the letter A to emphasize the importance of considering both the social and ecological implications of human activity. This mindset addresses environmental justice concerns, positive human interactions with the environment, and sustainable human communities. At the core, it is a basic human right to live in a healthy and safe environment, and a positive societal relationship with the environment is necessary to guarantee this right for all. Art is a way for people to connect with the environment and can give insight into the way society’s environmental ethic is ever shifting.
ContributorsCrawford-Paz Soldán, Elise (Author) / Minteer, Ben (Thesis director) / Sale, Gregory (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor) / School of Life Sciences (Contributor)
Created2022-05