Matching Items (16)
Filtering by

Clear all filters

150402-Thumbnail Image.png
Description
This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is

This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is marked by large transient increases in current through the tube and confirmed by a PCR (polymerase chain reaction) analysis. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurement, and open new avenues for control of DNA translocation. The second experiment constructed devices in which the interior of a single-walled carbon nanotube field-effect transistor (CNT-FET) acts as a nanofluidic channel that connects two fluid reservoirs, permitting measurement of the electronic properties of the SWCNT as it is wetted by an analyte. Wetting of the inside of the SWCNT by water turns the transistor on, while wetting of the outside has little effect. This finding may provide a new method to investigate water behavior at nanoscale. This also opens a new avenue for building sensors in which the SWCNT functions as an electronic detector. This thesis also presents some experiments that related to nanofabrication, such as construction of FET with tin sulfide (SnS) quantum ribbon. This work demonstrates the application of solution processed IV-VI semiconductor nanostructures in nanoscale devices.
ContributorsCao, Zhai (Author) / Lindsay, Stuart (Thesis advisor) / Vaiana, Sara (Committee member) / Ros, Robert (Committee member) / Marzke, Robert (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
151401-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable

Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are a series of studies toward this goal. First, a novel and robust strategy of DNA functionalized silver nanoparticles (AgNPs) was developed and DNA functionalized AgNPs were employed for the organization of discrete well-defined dimeric and trimeric structures using a DNA triangular origami scaffold. Assembly of 1:1 silver nanoparticle and gold nanoparticle heterodimer has also been demonstrated using the same approach. Next, the triangular origami structures were used to co-assemble gold nanoparticles (AuNPs) and fluorophores to study the distance dependent and nanogap dependencies of the photonic interactions between them. These interactions were found to be consistent with the full electrodynamic simulations. Further, a gold nanorod (AuNR), an anisotropic nanoparticle was assembled into well-defined dimeric structures with predefined inter-rod angles. These dimeric structures exhibited unique optical properties compared to single AuNR that was consistent with the theoretical calculations. Fabrication of otherwise difficult to achieve 1:1 AuNP- AuNR hetero dimer, where the AuNP can be selectively placed at the end-on or side-on positions of anisotropic AuNR has also been shown. Finally, a click chemistry based approach was developed to organize sugar modified DNA on a particular arm of a DNA origami triangle and used them for site-selective immobilization of small AgNPs.
ContributorsPal, Suchetan (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
151169-Thumbnail Image.png
Description
The goal of this theoretical study of infrared spectra was to ascertain to what degree molecules may be identified from their IR spectra and which spectral regions are best suited for this purpose. The frequencies considered range from the lowest frequency molecular vibrations in the far-IR, terahertz region (below ~3

The goal of this theoretical study of infrared spectra was to ascertain to what degree molecules may be identified from their IR spectra and which spectral regions are best suited for this purpose. The frequencies considered range from the lowest frequency molecular vibrations in the far-IR, terahertz region (below ~3 THz or 100 cm-1) up to the highest frequency vibrations (~120 THz or 4000 cm-1). An emphasis was placed on the IR spectra of chemical and biological threat molecules in the interest of detection and prevention. To calculate IR spectra, the technique of normal mode analysis was applied to organic molecules ranging in size from 8 to 11,352 atoms. The IR intensities of the vibrational modes were calculated in terms of the derivative of the molecular dipole moment with respect to each normal coordinate. Three sets of molecules were studied: the organophosphorus G- and V-type nerve agents and chemically related simulants (15 molecules ranging in size from 11 to 40 atoms); 21 other small molecules ranging in size from 8 to 24 atoms; and 13 proteins ranging in size from 304 to 11,352 atoms. Spectra for the first two sets of molecules were calculated using quantum chemistry software, the last two sets using force fields. The "middle" set used both methods, allowing for comparison between them and with experimental spectra from the NIST/EPA Gas-Phase Infrared Library. The calculated spectra of proteins, for which only force field calculations are practical, reproduced the experimentally observed amide I and II bands, but they were shifted by approximately +40 cm-1 relative to experiment. Considering the entire spectrum of protein vibrations, the most promising frequency range for differentiating between proteins was approximately 600-1300 cm-1 where water has low absorption and the proteins show some differences.
ContributorsMott, Adam J (Author) / Rez, Peter (Thesis advisor) / Ozkan, Banu (Committee member) / Shumway, John (Committee member) / Thorpe, Michael (Committee member) / Vaiana, Sara (Committee member) / Arizona State University (Publisher)
Created2012
151211-Thumbnail Image.png
Description
CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA

CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA wrt its persistence length and contour length. Although, previous experiments and studies show no difference between the physical properties of the two, the data collected and interpreted here gives a different picture to the methylation phenomena and its effect on gene silencing. The study was extended to the artificially reconstituted chromatin and its interactions with the methyl CpG binding proteins were also probed.
ContributorsKaur, Parminder (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Tao, Nongjian (Committee member) / Vaiana, Sara (Committee member) / Beckenstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2012
Description
Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to modify existing protein structures is challenging due to the limitations

Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to modify existing protein structures is challenging due to the limitations of structural changes and difficulty in folding polypeptides into defined protein structures. Recent studies have shown that nanoscale architectures created by DNA nanotechnology can be used to mimic various protein functions, including some membrane proteins. However, mimicking the highly sophisticated structural dynamics of membrane proteins by DNA nanostructures is still in its infancy, mainly due to lack of transmembrane DNA nanostructures that can mimic the dynamic behavior, ubiquitous to membrane proteins. Here, I demonstrate design of dynamic DNA nanostructures to mimic two important class of membrane proteins. First, I describe a DNA nanostructure that inserts through lipid membrane and dynamically reconfigures upon sensing a membrane-enclosed DNA or RNA target, thereby transducing biomolecular information across the lipid membrane similar to G-protein coupled receptors (GPCR’s). I use the non-destructive sensing property of our GPCR-mimetic nanodevice to sense cancer associated micro-RNA biomarkers inside exosomes without the need of RNA extraction and amplification. Second, I demonstrate a fully reversibly gated DNA nanopore that mimics the ligand mediated gating of ion channel proteins. The 20.4 X 20.4 nm-wide channel of the DNA nanopore allows timed delivery of folded proteins across synthetic and biological membranes. These studies represent early examples of dynamic DNA nanostructures in mimicking membrane protein functions. I envision that they will be used in synthetic biology to create artificial cells containing GPCR-like and ion channel-like receptors, in site-specific drug or vaccine delivery and highly sensitive biosensing applications.
ContributorsDey, Swarup (Author) / Yan, Hao (Thesis advisor) / Hariadi, Rizal F (Thesis advisor) / Liu, Yan (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
171581-Thumbnail Image.png
Description
Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for

Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for textile, biomedical, drug delivery, among many others. Amorphous materials are metastable, with kinetic profiles of phase transitions depending on relaxation dynamics, thermal history, plus factors such as temperature, pressure, and humidity. Understanding molecular structure and phase transitions of amorphous states of small molecules and biopolymers is broadly important for realizing their applications. The structure of liquid and glassy states of the drugs carbamazepine (CBZ) and indomethacin (IMC) were studied with solid-state nuclear magnetic resonance (ssNMR) spectroscopy, high energy X-ray diffraction, Fourier Infrared Transform Spectroscopy (FTIR), differential scanning calorimetry (DSC), and Empirical Potential Structure Refinement (EPSR). Both drugs have multiple crystalline polymorphs with slow dissolution kinetics, necessitating stable glassy or polymer dispersed formulations. More hydrogen bonds per CBZ molecule and a larger distribution of oligomeric states in the glass versus the liquid than expected. The chlorobenzyl ring of crystalline and glassy IMC measured with ssNMR were surprisingly found to have similar mobility. Crucially, humidity strongly affects glass structure, highlighting the importance of combining modeling techniques like EPSR with careful sample preparation for proper interpretation. Highly basic protic ionic liquids with low ∆pKa were synthesized with metathesis rather than proton transfer and characterized using NMR and dielectric spectroscopy. Finally, the protein secondary structure of spider egg sac silk was studied using ssNMR, FTIR, and scanning electron microscopy. Tubuliform silk found in spider egg sacs has extensive β-sheet domains which form nanocrystallites within an amorphous matrix. Structural predictions and spectroscopic measurements of tubuliform silk solution are mostly α-helical, with the mechanism of structural rearrangement to the β-sheet rich fiber unknown. The movement of spiders during egg silk spinning make in situ experiments difficult practically. This work is the first observation that tubuliform silk of Argiope aurantia after liquid crystalline spinning exits the spinneret as a predominantly (~70%) β-sheet fiber.
ContributorsEdwards, Angela Diane (Author) / Yarger, Jeffery L (Thesis advisor) / Liu, Yan (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2022
171450-Thumbnail Image.png
Description
Transportation of material across a cell membrane is a vital process for maintaininghomeostasis. Na+/H+ antiporters, for instance, help maintain cell volume and regulate intracellular sodium and proton concentrations. They are prime drug targets, since dysfunction of these crucial proteins in humans is linked to heart and neurodegenerative diseases. Due to their placement in

Transportation of material across a cell membrane is a vital process for maintaininghomeostasis. Na+/H+ antiporters, for instance, help maintain cell volume and regulate intracellular sodium and proton concentrations. They are prime drug targets, since dysfunction of these crucial proteins in humans is linked to heart and neurodegenerative diseases. Due to their placement in a cell membrane, their study is particularly difficult compared to globular proteins, which is likely the reason the transport mechanisms for these proteins are not entirely known. This work focuses on the electrogenic bacterial homologs Thermus thermophilus NapA (TtNapA) and Echerichia coli NhaA (EcNhaA), each transporting one sodium from the interior of the cell for two protons on outside of the cell. Even though X-ray crystal structures for both of these systems have been resolved, their study through molecular dynamics (MD) simulations is limited. The dynamic protonation and deprotonation of the binding site residues is a fundamental process in the transport cycle, which currently cannot be explored intuitively with standard MD methodologies. Apart from this limitation, simulation performance is only a fraction of what is needed to understand the full transport process, particularly when it comes to global conformational changes. This work seeks to overcome these limitations through the development and application of a multiscale thermodynamic and kinetic framework for constructing models capable of predicting experimental observables, such as the dependence of transporter turnover on membrane voltage. These models allow interpretation of the effects of individual processes on the function as a whole. This procedure is demonstrated for TtNapA and the connection between structure and function is shown by computing cycle turnover across a range of non-equilibrium conditions.
ContributorsKenney, Ian Michael (Author) / Beckstein, Oliver (Thesis advisor) / Ozkan, Sefika Banu (Committee member) / Heyden, Matthias (Committee member) / Vaiana, Sara (Committee member) / Arizona State University (Publisher)
Created2022
193421-Thumbnail Image.png
Description
Proteins, the machinery of life, perform a vast array of essential biochemical functions, evolving over time to acquire diverse roles within biological systems. This evolution, primarily driven by mutations within protein sequences, can profoundly impact protein function, potentially leading to various diseases. This thesis aims to dissect the intricate mechanisms

Proteins, the machinery of life, perform a vast array of essential biochemical functions, evolving over time to acquire diverse roles within biological systems. This evolution, primarily driven by mutations within protein sequences, can profoundly impact protein function, potentially leading to various diseases. This thesis aims to dissect the intricate mechanisms through which genetic mutations influence protein functionality, focusing on the dynamic alterations induced by single and combined mutations. Employing a suite of computational tools, including molecular dynamics (MD) simulations and proven analysis metrics like the Dynamic Flexibility Index (DFI) and Dynamic Coupling Index (DCI), I analyze protein dynamics to uncover the common dynamic effects associated with disease causation and compensatory mechanisms. This analysis extends to exploring the concept of epistasis through the lens of protein dynamics, showing how combinations of mutations interact within the protein's 3D structure to either exacerbate or mitigate the functional impacts of individual mutations. The use of EpiScore, a computational tool designed to quantify the epistatic effects of mutations, provides insight on the combined dynamic effects two mutations might have. This is particularly evident in the analysis of rare alleles within human populations, where certain allele combinations, despite their individual rarity, frequently co-occur, suggesting a mechanism of dynamic compensation. This phenomenon is further investigated in the context of the SARS-CoV-2 spike protein, providing insights into viral evolution and the adaptive significance of specific mutations. Additionally, I delve into the role of Intrinsically Disordered Regions (IDRs) in protein function and mutation compensation, highlighting the need for sophisticated dynamics analysis tools to capture the full spectrum of mutation effects. By integrating these analyses, this thesis unveils a complex picture of how proteins' dynamic properties, shaped by mutations, underpin their functional evolution and disease outcomes.
ContributorsOse, Nicholas James (Author) / Ozkan, Sefika Banu (Thesis advisor) / Hariadi, Rizal (Committee member) / Beckstein, Oliver (Committee member) / Vaiana, Sara (Committee member) / Arizona State University (Publisher)
Created2024
153505-Thumbnail Image.png
Description
Spider dragline silk is an outstanding biopolymer with a strength that exceeds steel by weight and a toughness greater than high-performance fibers like Kevlar. For this reason, structural and dynamic studies on the spider silk are of great importance for developing future biomaterials. The spider dragline silk comprises two silk

Spider dragline silk is an outstanding biopolymer with a strength that exceeds steel by weight and a toughness greater than high-performance fibers like Kevlar. For this reason, structural and dynamic studies on the spider silk are of great importance for developing future biomaterials. The spider dragline silk comprises two silk proteins, Major ampullate Spidroin 1 and 2 (MaSp1 and 2), which are synthesized and stored in the major ampullate (MA) gland of spiders. The initial state of the silk proteins within Black Widow MA glands was probed with solution-state NMR spectroscopy. The conformation dependent chemical shifts information indicates that the silk proteins are unstructured and in random coil conformation. 15N relaxation parameters, T1, T2 and 15N-{1H} steady-state NOE were measured to probe the backbone dynamics for MA silk proteins. These measurements indicate fast sub-nanosecond timescale backbone dynamics for the repetitive core of spider MA proteins indicating that the silk proteins are unfolded, highly flexible random coils in the MA gland. The translational diffusion coefficients of the spider silk proteins within the MA gland were measured using 1H diffusion NMR at 1H sites from different amino acids. A phenomenon was observed where the measured diffusion coefficients decrease with an increase in the diffusion delay used. The mean displacement along the external magnetic field was found to be 0.35 μm and independent of the diffusion delay. The results indicate that the diffusion of silk protein was restricted due to intermolecular cross-linking with only segmental diffusion observable.

To understand how a spider converts the unfolded protein spinning dope into a highly structured and oriented in the super fiber,the effect of acidification on spider silk assembly was investigated on native spidroins from the major ampullate (MA) gland fluid excised from Latrodectus hesperus (Black Widow) spiders. The in vitro spider silk assembly kinetics were monitored as a function of pH with a 13C solid-state Magic Angle Spinning (MAS) NMR approach. The results confirm the importance of acidic pH in the spider silk self-assembly process with observation of a sigmoidal nucleation-elongation kinetic profile. The rates of nucleation and elongation and the percentage of β-sheet structure in the grown fibers depend on pH.

The secondary structure of the major ampullate silk from Peucetia viridians (Green Lynx) spiders was characterized by X-ray diffraction (XRD) and solid-state NMR spectroscopy. From XRD measurement, β-sheet nano-crystallites were observed that are highly oriented along the fiber axis with an orientational order of 0.980. Compare to the crystalline region, the amorphous region was found to be partially oriented with an orientational order of 0.887. Further, two dimensional 13C-13C through-space and through-bond solid-state NMR experiments provide structural analysis for the repetitive amino acid motifs in the silk proteins. The nano-crystallites are mainly alanine-rich β-sheet structures. The total percentage of crystalline region is determined to be 40.0±1.2 %. 18±1 % of alanine, 60±2 % glycine and 54±2 % serine are determined to be incorporated into helical conformations while 82±1 % of alanine, 40±3 % glycine and 46±2 % serine are in the β-sheet conformation.
ContributorsXu, Dian (Author) / Yarger, Jeffery L (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Wang, Xu (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015
153462-Thumbnail Image.png
Description
Calcitonin Gene-Related Peptide (CGRP) is an intrinsically disordered protein

that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP or how CGRP is able to function in the cell,

Calcitonin Gene-Related Peptide (CGRP) is an intrinsically disordered protein

that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP or how CGRP is able to function in the cell, despite the lack of regular secondary structure. This work focuses characterizing the non-local structural and dynamical properties of the CGRP monomer in solution, and understanding how these are affected by the sequence and the solution environment. The unbound, free state of CGRP is measured using a nanosecond laser-pump spectrophotometer, which allows measuring the end-to-end distance (a non-local structural property) and the rate of end-to-end contact formation (intra-chain diffusional dynamics). The data presented in this work show that electrostatic interactions strongly modulate the structure of CGRP, and that peptide-solvent interactions are sequence and charge dependent and can have a significant effect on the internal dynamics of the peptide. In the last few years migraine research has shifted focus to disrupting the CGRP-receptor pathway through the design of pharmacological drugs that bind to either CGRP or its receptor, inhibiting receptor activation and therefore preventing or reducing the frequency of migraine attacks. Understanding what types of intra- and inter-chain interactions dominate in CGRP can help better design drugs that disrupt the binding of CGRP to its receptor.
ContributorsSizemore, Sara (Author) / Vaiana, Sara (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Robert (Committee member) / Lindsay, Stuart (Committee member) / Ozkan, Sefika (Committee member) / Arizona State University (Publisher)
Created2015