Matching Items (13)
Filtering by

Clear all filters

137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137550-Thumbnail Image.png
Description
This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which

This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which cannot sustain a solid form within the body. Therefore, this report will ultimately explore the means of creating a non-degradable, injectable, chemically cross-linking methylcellulose- based hydrogel. Methylcellulose will be evaluated and altered in experiments conducted within this report and a chemical cross-linker, developed from Jeffamine ED 2003 (O,O′-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), will be created. Experimentation with these elements is outlined here, and will ultimately prompt future revisions and analysis.
ContributorsBundalo, Zoran Luka (Author) / Vernon, Brent (Thesis director) / LaBelle, Jeffrey (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
134605-Thumbnail Image.png
Description
The growth of the medical diagnostic industry in the past several decades has largely been due to the creation and iterative optimization of bio sensors. Recent pushes towards value added as well as preventative health care has made point of care devices more attractive to health care providers. Rapid detection

The growth of the medical diagnostic industry in the past several decades has largely been due to the creation and iterative optimization of bio sensors. Recent pushes towards value added as well as preventative health care has made point of care devices more attractive to health care providers. Rapid detection for diseases and cancers is done with a bio sensor, which a broad term used to describe an instrument which uses a bio chemical reaction to detect a chemical compound with the use of a bio recognition event in addition to a signal detection event. The bio sensors which are presented in this work are known as ion-sensitive field effects transistors (ISFETs) and are similar in function to a metal oxide field effect transistor (MOSFET). These ISFETs can be used to sense pH or the concentration of protons on the surface of the gate channel. These ISFETs can be used for certain bio recognition events and this work presents the application of these transistors for the quantification of tumor cell proliferation. This includes the development of a signal processing and acquisition system for the long term assessment of cellular metabolism and optimizing the system for use in an incubator. This thesis presents work done towards the optimization and implementation of complementary metal\u2014oxide\u2014semiconductor (CMOS) ISFETs as well as remote gate ISFETs for the continuous assessment of tumor cell extracellular pH. The work addresses the challenges faced with the fabrication and optimization of these sensors, which includes the mitigation of current drift with the use of pulse width modulation in addition to issues encountered with fabrication of electrodes on a quartz substrate. This work culminates in the testing of an autonomous system with mammary tumor cells as well as the assessment of cell viability in an incubator over extended periods. Future applications of this work include the creation of a remote gate ISFET array for multiplexed detection as well as the implementation of ISFETs for bio marker detection via an immunoassay.
ContributorsArafa, Hany Mohamed (Author) / Blain Christen, Jennifer (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137762-Thumbnail Image.png
Description
This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to

This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to teach seventh graders how to write persuasively. The definitions of student centered and teacher centered management styles used in this paper are drawn from Garret (2008) which suggests that teachers are not entirely one management style or the other, but a mix of the two. This paper closely examines three teachers, two with teacher centered styles and one with a student centered style in order to see which style was most effective in promoting the learning of persuasive writing skills. The findings tentatively indicate that teacher centered management styles yield larger gains in learning compared to more student centered styles.
ContributorsAyala, Joel Nicholas (Author) / Hayes, Elisabeth (Thesis director) / Siyahhan, Sinem (Committee member) / Holmes, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
MPV17-related hepatocerebral mitochondrial DNA depletion syndrome, previously known as Navajo Neurohepatopathy (NNH), is a rare genetic disease affecting Navajo children of the American Southwest. These children can suffer from several severe symptoms like brain damage and liver disease, and a diagnosis leads to death by age 10, on average. The

MPV17-related hepatocerebral mitochondrial DNA depletion syndrome, previously known as Navajo Neurohepatopathy (NNH), is a rare genetic disease affecting Navajo children of the American Southwest. These children can suffer from several severe symptoms like brain damage and liver disease, and a diagnosis leads to death by age 10, on average. The only known effective therapy for NNH is a liver transplant. Currently, the disease is diagnosed through a lengthy and expensive process of gene sequencing, but oftentimes patients with the most severe forms of NNH deteriorate quickly; thus a rapid diagnostic would be beneficial to beginning the transplant process as early as possible. Here, Tentacle Probes, a novel technology to detect genetic mutations, were proposed to rapidly and accurately diagnose NNH. Because of Tentacle Probes' double binding site kinetics, they can detect mutations more accurately than other types of genetic probes. Probes specific to the NNH mutation were designed for use with a real-time polymerase chain reaction (PCR) detection platform. Initial synthetic DNA testing of Tentacle Trobes showed capable differentiation between mutated and non-mutated samples. However, experiments to validate those results at Phoenix Children's Hospital before moving to patient samples showed that test viability decreased over time. Efforts to diagnose the issues that led to decreased viability suggested four possible explanations that are as follows (in order of decreasing likelihood): first, undesired products from improper PCR primer design was supported by double bands in DNA gel electrophoresis; second, DNA may have degraded over time or due to repeated cycles of freezing and thawing stock solutions, and this was supported by smeared DNA gel electrophoresis; third, probe degradation, specifically of the fluorescent reporter, is possible; finally, contaminants that inhibit the PCR reaction may have been introduced. A combination of these factors may also have caused the change in assay viability. As a result of these most likely possibilities, new primers were designed and steps suggested to return viability to the assay. Thus, the various limitations and requirements for this Tentacle Probe diagnostic have been identified, and as assay development continues following the promising initial results achieved, we are confident that a rapid method if diagnosing NNH is on its way to help the children afflicted with this devastating disease receive timely access to treatment.
ContributorsThompson, Emily Rose (Author) / Caplan, Michael (Thesis director) / Carpentieri, David (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148148-Thumbnail Image.png
Description

This thesis project is the result of close collaboration with the Arizona State University Biodesign Clinical Testing Laboratory (ABCTL) to document the characteristics of saliva as a test sample, preanalytical considerations, and how the ABCTL utilized saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. As of

This thesis project is the result of close collaboration with the Arizona State University Biodesign Clinical Testing Laboratory (ABCTL) to document the characteristics of saliva as a test sample, preanalytical considerations, and how the ABCTL utilized saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. As of April 2021, there have been over 130 million recorded cases of COVID-19 globally, with the United States taking the lead with approximately 31.5 million cases. Developing highly accurate and timely diagnostics has been an important need of our country that the ABCTL has had tremendous success in delivering. Near the start of the pandemic, the ABCTL utilized saliva as a testing sample rather than nasopharyngeal (NP) swabs that were limited in supply, required highly trained medical personnel, and were generally uncomfortable for participants. Results from literature across the globe showed how saliva performed just as well as the NP swabs (the golden standard) while being an easier test to collect and analyze. Going forward, the ABCTL will continue to develop high quality diagnostic tools and adapt to the ever-evolving needs our communities face regarding the COVID-19 pandemic.

ContributorsSmetanick, Jennifer (Author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131923-Thumbnail Image.png
Description
Older adults tend to learn at a lesser extent and slower rate than younger individuals. This is especially problematic for older adults at risk to injury or neurological disease who require therapy to learn and relearn motor skills. There is evidence that the reticulospinal system is critical to motor learning

Older adults tend to learn at a lesser extent and slower rate than younger individuals. This is especially problematic for older adults at risk to injury or neurological disease who require therapy to learn and relearn motor skills. There is evidence that the reticulospinal system is critical to motor learning and that deficits in the reticulospinal system may be responsible, at least in part, for learning deficits in older adults. Specifically, delays in the reticulospinal system (measured via the startle reflex) are related to poor motor learning and retention in older adults. However, the mechanism underlying these delays in the reticulospinal system is currently unknown.

Along with aging, sleep deprivation is correlated with learning deficits. Research has shown that a lack of sleep negatively impacts motor skill learning and consolidation. Since there is a link between sleep and learning, as well as learning and the reticulospinal system, these observations raise the question: does sleep deprivation underlie reticulospinal delays? We hypothesized that sleep deprivation was correlated to a slower startle response, indicating a delayed reticulospinal system. Our objectives were to observe the impact of sleep deprivation on 1) the startle response (characterized by muscle onset latency and percentage of startle responses elicited) and 2) functional performance (to determine whether subjects were sufficiently sleep deprived).

21 young adults participated in two experimental sessions: one control session (8-10 hour time in bed opportunity for at least 3 nights prior) and one sleep deprivation session (0 hour time in bed opportunity for one night prior). The same protocol was conducted during each session. First, subjects were randomly exposed to 15 loud, startling acoustic stimuli of 120 dB. Electromyography (EMG) data measured muscle activity from the left and right sternocleidomastoid (LSCM and RSCM), biceps brachii, and triceps brachii. To assess functional performance, cognitive, balance, and motor tests were also administered. The EMG data were analyzed in MATLAB. A generalized linear mixed model was performed on LSCM and RSCM onset latencies. Paired t-tests were performed on the percentage of startle responses elicited and functional performance metrics. A p-value of less than 0.05 indicated significance.

Thirteen out of 21 participants displayed at least one startle response during their control and sleep deprived sessions and were further analyzed. No differences were found in onset latency (RSCM: control = 75.87 ± 21.94ms, sleep deprived = 82.06 ± 27.47ms; LSCM: control = 79.53 ± 17.85ms, sleep deprived = 78.48 ± 20.75ms) and percentage of startle responses elicited (control = 84.10 ± 15.53%; sleep deprived = 83.59 ± 18.58%) between the two sessions. However, significant differences were observed in reaction time, TUG with Dual time, and average balance time with the right leg up. Our data did not support our hypothesis; no significant differences were seen between subjects’ startle responses during the control and sleep deprived sessions. However, sleep deprivation was indicated with declines were observed in functional performance. Therefore, we concluded that sleep deprivation may not affect the startle response and underlie delays in the reticulospinal system.
ContributorsGopalakrishnan, Smita (Author) / Honeycutt, Claire (Thesis director) / Petrov, Megan (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131928-Thumbnail Image.png
Description
Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests that there is a transition away from cortical execution. Recent
evidence indicates that

Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests that there is a transition away from cortical execution. Recent
evidence indicates that the reticulospinal system plays an important role in integration and
retention of learned motor skills. The brainstem has known age-rated deficits including cell
shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older
adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system
associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the
startle reflex) and corticospinal system (measured via Transcranial Magnetic Stimulation (TMS) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most improvement and retention while individuals with delayed startle responses show the least. We also found that there was no relationship between MEP latencies and improvement and retention. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure and can be used to determine learning deficits in older adults to facilitate better dosing during rehabilitation therapy.
ContributorsRangarajan, Vishvak (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05