Matching Items (32)
Filtering by

Clear all filters

134940-Thumbnail Image.png
Description
Currently, quantification of single cell RNA species in their natural contexts is restricted due to the little number of parallel analysis. Through this, we identify a method to increase the multiplexing capacity of RNA analysis for single cells in situ. Initially, RNA transcripts are found by using fluorescence in situ

Currently, quantification of single cell RNA species in their natural contexts is restricted due to the little number of parallel analysis. Through this, we identify a method to increase the multiplexing capacity of RNA analysis for single cells in situ. Initially, RNA transcripts are found by using fluorescence in situ hybridization (FISH). Once imaging and data storage is completed, the fluorescence signal is detached through photobleaching. By doing so, the FISH is reinitiated to detect other RNA species residing in the same cell. After reiterative cycles of hybridization, imaging and photobleaching, the identities, positions and copy numbers of a huge amount of varied RNA species can be computed in individual cells in situ. Through this approach, we have evaluated seven different transcripts in single HeLa cells with five reiterative RNA FISH cycles. This method has the ability to detect over 100 varied RNA species in single cells in situ, which can be further applied in studies of systems biology, molecular diagnosis and targeted therapies.
ContributorsJavangula, Saiswathi (Author) / Guo, Jia (Thesis director) / Liang, Jianming (Committee member) / School of Molecular Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135076-Thumbnail Image.png
Description
The dopamine 2 receptor (D2R) is a Class A GPCR which is essential for signaling in the nervous system, and has been implicated in numerous illnesses. While there are over 50 currently approved drugs which act on D2R, the structure has never been determined in detail. Although crystallography has historically

The dopamine 2 receptor (D2R) is a Class A GPCR which is essential for signaling in the nervous system, and has been implicated in numerous illnesses. While there are over 50 currently approved drugs which act on D2R, the structure has never been determined in detail. Although crystallography has historically been difficult with GPCRs, in recent years many structures have been solved using lipidic cubic phase (LCP) crystallization techniques. Sample preparation for LCP crystallization typically requires optimization of genetic constructs, recombinant expression, and purification techniques in order to produce a sample with sufficient stability and homogeneity. This study compares several genetic constructs utilizing different promoters, fusion proteins, fusion positions, and truncations in order to determine a high quality construct for LCP crystallization of
D2R. All constructs were expressed using the Bac-to-bac baculovirus expression system, then extracted with n-Dodecyl-β-D-Maltoside (DDM) and purified using metal affinity chromatography. Samples were then tested for quantity, purity, and homogeneity using SDS-PAGE, western blot, and size-exclusion chromatography. High quality samples were chosen based on insect cell expression levels, purification yield, and stability estimated by the levels of homomeric protein relative to aggregated protein. A final construct was chosen with which to continue future studies in optimization of thermal stability and crystallization conditions. Future work on this project is required to produce a sample amenable to crystallization. Screening of ligands for co-crystallization,
thermostabilizing point mutations, and potentially optimization of extraction and purification techniques prior to crystallization trials. Solving the D2R structure will lead to an increased understanding of its signaling mechanism and the mechanisms of currently approved drugs, while also providing a basis for more effective structure-based drug design.
ContributorsErler, Maya Marie (Author) / Liu, Wei (Thesis director) / He, Ximin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134915-Thumbnail Image.png
Description
G protein-coupled receptors, or GPCRs, are receptors located within the membrane of cells that elicit a wide array of cellular responses through their interactions with G proteins. Recent advances in the use of lipid cubic phase (LCP) for the crystallization of GPCRs, as well as increased knowledge of techniques to

G protein-coupled receptors, or GPCRs, are receptors located within the membrane of cells that elicit a wide array of cellular responses through their interactions with G proteins. Recent advances in the use of lipid cubic phase (LCP) for the crystallization of GPCRs, as well as increased knowledge of techniques to improve receptor stability, have led to a large increase in the number of available GPCR structures, despite historic difficulties. This project is focused on the histamine family of receptors, which are Class A GPCRs that are involved in the body’s allergic and inflammatory responses. In particular, the goal of this project was to design, express, and purify histamine receptors with the ultimate goal of crystallization. Successive rounds of optimization included the use of recombinant DNA techniques in E.coli to truncate sections of the proteins and the insertion of several fusion partner proteins to improve receptor expression and stability. All constructs were expressed in a Bac-to-Bac baculovirus expression system using Sf9 insect cells, solubilized using n-Dodecyl-β-D-Maltoside (DDM), and purified using immobilized metal affinity chromatography. Constructs were then analyzed by SDS-Page, Western blot, and size-exclusion chromatography to determine their presence, purity, and homogeneity. Along with their expression data from insect cells, the most stable and homogeneous construct from each round was used to design successive optimizations. After 3 rounds of construct design for each receptor, much work remains to produce a stable sample that has the potential to crystallize. Future work includes further optimization of the insertion site of the fusion proteins, ligand screening for co-crystallization, optimization of purification conditions, and screening of potential thermostabilizing point mutations. Success in solving a structure will allow for a more detailed understanding of the receptor function in addition to its vital use in rational drug discovery.
ContributorsCosgrove, Steven Andrew (Author) / Liu, Wei (Thesis director) / Mills, Jeremy (Committee member) / Mazor, Yuval (Committee member) / W. P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171774-Thumbnail Image.png
Description
The understanding of protein functions in vivo is very important since the protein is the building block of a cell. Cryogenic electron microscopy (cryo-EM) is capable of visualizing protein samples in their near-native states in high-resolution details. Cryo-EM enables the visualization of biomolecular structures at multiscale ranging from

The understanding of protein functions in vivo is very important since the protein is the building block of a cell. Cryogenic electron microscopy (cryo-EM) is capable of visualizing protein samples in their near-native states in high-resolution details. Cryo-EM enables the visualization of biomolecular structures at multiscale ranging from a cellular structure to an atomic structure of protein subunit.Neurodegenerative diseases, like Alzheimer’s disease and frontotemporal dementia, have multiple dysregulated signaling pathways. In my doctoral studies, I investigated two protein complexes relevant to these disorders: one is the proNGF- p75 neurotrophin receptor (p75NTR)- sortilin neurotrophin complex and the other is the p97R155H mutant complex. The neurotrophins are a family of soluble basic growth factors involved in the development, maintenance, and proliferation of neurons in the central nervous system (CNS) and peripheral nervous system (PNS). The ligand for the neuronal receptors dictates the fate of the neuronal cells. My studies focused on understanding the binding interfaces between the proteins in the proNGF-p75NTR-sortilin neuronal apoptotic complex. I have performed the biochemical characterization of the complex to understand how the complex formation occurs. Single amino-acid mutation of R155H on the N-domain of p97 is known to be the prevalent mutation in 40% patients suffering from neurodegenerative disease. The p97R155H mutant exhibits abnormal ATPase activity and cofactor dysregulation. I pursued biochemical characterization in combination with single-particle cryo-EM to explore the interaction of p97R155H mutant with its cofactor p47 and determined the full-length structures of the p97R155H-p47 assemblies for the first time. About 40% p97R155H organizes into higher order dodecamers, which lacks nucleotide binding, does not bind to p47, and closely resembles the structure of p97 bound with an adenosine triphosphate (ATP)-competitive inhibitor, CB-5083, suggesting an inactive state of the p97R155H mutant. The structures also revealed conformational changes of the arginine fingers which might contribute to the elevated p97R155H ATPase activity. Because the D1-D2 domain communication is important in regulating the ATPase function, I further studied the functions of the conserved L464 residue on the D1-D2 linker using mutagenesis and single-particle cryo-EM. The biochemical and structural results suggested the torsional constraint of the D1-D2 linker likely modulates the D2 ATPase activity. Our studies thus contributed to develop deeper knowledge of the intricate cellular mechanisms and the proteins affected in disease pathways.
ContributorsNandi, Purbasha (Author) / Chiu, Po-Lin (Thesis advisor) / Mazor, Yuval (Committee member) / Hansen, Debra T (Committee member) / Arizona State University (Publisher)
Created2022
171514-Thumbnail Image.png
Description
Plasma and serum are the most commonly used liquid biospecimens in biomarker research. These samples may be subjected to several pre-analytical variables (PAVs) during collection, processing and storage. Exposure to thawed conditions (temperatures above -30 °C) is a PAV that is hard to control, and track and could provide misleading

Plasma and serum are the most commonly used liquid biospecimens in biomarker research. These samples may be subjected to several pre-analytical variables (PAVs) during collection, processing and storage. Exposure to thawed conditions (temperatures above -30 °C) is a PAV that is hard to control, and track and could provide misleading information, that fail to accurately reveal the in vivo biological reality, when unaccounted for. Hence, assays that can empirically check the integrity of plasma and serum samples are crucial. As a solution to this issue, an assay titled ΔS-Cys-Albumin was developed and validated. The reference range of ΔS-Cys-Albumin in cardio vascular patients was determined and the change in ΔS-Cys-Albumin values in different samples over time course incubations at room temperature, 4 °C and -20 °C were evaluated. In blind challenges, this assay proved to be successful in identifying improperly stored samples individually and as groups. Then, the correlation between the instability of several clinically important proteins in plasma from healthy and cancer patients at room temperature, 4 °C and -20 °C was assessed. Results showed a linear inverse relationship between the percentage of proteins destabilized and ΔS-Cys-Albumin regardless of the specific time or temperature of exposure, proving ΔS-Cys-Albumin as an effective surrogate marker to track the stability of clinically relevant analytes in plasma. The stability of oxidized LDL in serum at different temperatures was assessed in serum samples and it stayed stable at all temperatures evaluated. The ΔS-Cys-Albumin requires the use of an LC-ESI-MS instrument which limits its availability to most clinical research laboratories. To overcome this hurdle, an absorbance-based assay that can be measured using a plate reader was developed as an alternative to the ΔS-Cys-Albumin assay. Assay development and analytical validation procedures are reported herein. After that, the range of absorbance in plasma and serum from control and cancer patients were determined and the change in absorbance over a time course incubation at room temperature, 4 °C and -20 °C was assessed. The results showed that the absorbance assay would act as a good alternative to the ΔS-Cys-Albumin assay.
ContributorsJehanathan, Nilojan (Author) / Borges, Chad (Thesis advisor) / Guo, Jia (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2022
171891-Thumbnail Image.png
Description
First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons

First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons to be transferred energetically uphill, eventually to be stored as a high energy chemical bond. These protein complexes are highly conserved throughout different photosynthetic lineages and understanding the variations across species is vital for a complete understanding of how photosynthetic organisms can adapt to vastly different environmental conditions. Most knowledge about photosynthesis comes from only a handful of model organisms grown under laboratory conditions. Studying model organisms has facilitated major breakthroughs in understanding photosynthesis, however, due to the vast global diversity of environments where photosynthetic organisms are found, certain aspects of this process may be overlooked or missed by focusing on a select group of organisms optimized for studying in laboratory conditions. This dissertation describes the isolation of a new extremophile cyanobacteria, Cyanobacterium aponinum 0216, from the Arizona Sonoran Desert and its innate ability to grow in light intensities that exceed other model organisms. A structure guided approach was taken to investigate how the structure of photosystem I can influence the spectroscopic properties of chlorophylls, with a particular focus on long wavelength chlorophylls, in an attempt to uncover if photosystem I is responsible for high light tolerance in Cyanobacterium aponinum 0216. To accomplish this, the structure of photosystem I was solved by cryogenic electron microscopy to 2.7-anstrom resolution. By comparing the structure and protein sequences of Cyanobacterium aponinum to other model organisms, specific variations were identified and explored by constructing chimeric PSIs in the model organism Synechocystis sp. PCC 6803 to determine the effects that each specific variation causes. The results of this dissertation describe how the protein structure and composition affect the spectroscopic properties of chlorophyll molecules and the oligomeric structure of photosystem I, possibly providing an evolutionary advantage in the high light conditions observed in the Arizona Sonoran Desert.
ContributorsDobson, Zachary (Author) / Fromme, Petra (Thesis advisor) / Mazor, Yuval (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2022
171900-Thumbnail Image.png
Description
The growing global energy demand coupled with the need for a low-carbon economy requires innovative solutions. Microalgal oxygenic photosynthesis provides a sustainable platform for efficient capture of sunlight and storage of some of the energy in the form of reduced carbon derivatives. Under certain conditions, the photosynthetic reductant can be

The growing global energy demand coupled with the need for a low-carbon economy requires innovative solutions. Microalgal oxygenic photosynthesis provides a sustainable platform for efficient capture of sunlight and storage of some of the energy in the form of reduced carbon derivatives. Under certain conditions, the photosynthetic reductant can be shunted to molecular hydrogen production, yet the efficiency and longevity of such processes are insufficient. In this work, re-engineering of the heterodimeric type I reaction center, also known as photosystem I (PSI), in the green microalga Chlamydomonas reinhardtii was shown to dramatically change algal metabolism and improve photobiological hydrogen production in vivo. First, an internal fusion of the small PsaC subunit of PSI harboring the terminal photosynthetic electron transport chain cofactors with the endogenous algal hydrogenase 2 (HydA2) was demonstrated to assemble on the PSI core in vivo, albeit at ~15% the level of normal PSI accumulation, and make molecular hydrogen from water oxidation. Second, the more physiologically active algal endogenous hydrogenase 1 (HydA1) was fused to PsaC in a similar fashion, resulting in improved levels of accumulation (~75%). Both algal hydrogenases chimeras remained extremely oxygen sensitive and benefited from oxygen removal methods. On the example of PSI-HydA1 chimera, it was demonstrated that the active site of hydrogenase can be reactivated in vivo after complete inactivation by oxygen without the need for new polypeptide synthesis. Third, the hydrogenase domain of Megasphaera elsdenii bacterial hydrogenase (MeHydA) was also fused with psaC, resulting in expression of a PSI-hydrogenase chimera at ~25% the normal level. The heterologous hydrogenase chimera could be activated with the algal maturation system, despite only 32 % sequence identity (43 % similarity). All constructs demonstrated diminished ability to reduce PSI electron acceptors (ferredoxin and flavodoxin) in vitro and indirect evidence indicated that this was true in vivo as well. Finally, chimeric design considerations are discussed in light of the models generated by Alphafold2 and how could they be used to further optimize stability of the PSI-hydrogenase chimeric complexes.
ContributorsKanygin, Andrey (Author) / Redding, Kevin E (Thesis advisor) / Jones, Anne K (Committee member) / Mazor, Yuval (Committee member) / Arizona State University (Publisher)
Created2022
189271-Thumbnail Image.png
Description
Based on past studies, urinary glycan biomarkers have the potential to be used as diagnostic and prognostic markers for treatment purposes. This study brought into play the bottom-up glycan node analysis approach to analyze 39 urine samples from COVID-19 positive and negative individuals using gas chromatography-mass spectrometry (GC-MS) to determine

Based on past studies, urinary glycan biomarkers have the potential to be used as diagnostic and prognostic markers for treatment purposes. This study brought into play the bottom-up glycan node analysis approach to analyze 39 urine samples from COVID-19 positive and negative individuals using gas chromatography-mass spectrometry (GC-MS) to determine potential urinary glycan biomarkers of COVID-19. Glycan node analysis involves chemically breaking down glycans in whole biospecimens in a way that conserves both monosaccharide identity and linkage information that facilitates the capture of unique glycan features as single analytical signals. Following data acquisition, the student t-test was done on all the nodes, but only four prominent nodes (t-Deoxyhexopyranose, 2,3-Gal, t-GlcNAc, and 3,6-GalNAc with respective p-values 0.03027, 0.03973, 0.0224, and 0.0004) were below the threshold p-value of 0.05 and showed some differences in the mean between both groups. To eliminate the probability of having false positive p-values, Bonferroni correction was done on the four nodes but only the 3,6-GalNAc node emerged as the only node that was below the newly adjusted p-value. Because sample analyses were done in batches, the Kruskal Wallis test was done to know if the batch effect was responsible for the observed lower relative concentration of 3,6-GalNAc in COVID-19 positive patients than in negative patients. A receiver operating characteristic curve (ROC) was plotted for the 3,6-GalNAc node and the area under the curve (AUC) was calculated to be 0.84, casting the 3,6-GalNAc node was a potential biomarker of COVID-19. 3,6-GalNAc largely arises from branched O-glycan core structures, which are abundant in mucin glycoproteins that line the urogenital tract. Lowered relative concentrations of 3,6-GalNAc in the urine of COVID-19 positive patients may be explained by compromised kidney function that allows non-mucinous glycoproteins from the blood to contribute a greater proportion of the relative glycan node signals than in COVID-19 negative patients. Future prospective clinical studies will be needed to validate both the biomarker findings and this hypothesis.
ContributorsEyonghebi Tanyi, Agbor (Author) / Borges, Chad R (Thesis advisor) / Mills, Jeremy H (Committee member) / Guo, Jia (Committee member) / Arizona State University (Publisher)
Created2023
Description

This qualitative study sought to investigate the potential reaction between the 3,3',5,5'-tetramethylbenzidine (TMB) radical and LAF-1 RGG, the N-terminus domain of an RNA helicase which functions as a coacervating intrinsically disordered protein. The study was performed by adding horseradish peroxidase to a solution containing TMB and either LAF-1 or tyrosine

This qualitative study sought to investigate the potential reaction between the 3,3',5,5'-tetramethylbenzidine (TMB) radical and LAF-1 RGG, the N-terminus domain of an RNA helicase which functions as a coacervating intrinsically disordered protein. The study was performed by adding horseradish peroxidase to a solution containing TMB and either LAF-1 or tyrosine in various concentrations, and monitoring the output through UV-Vis spectroscopy. The reacted species was also analyzed via MALDI-TOF mass spectrometry. UV-Vis spectroscopic monitoring showed that in the presence of LAF-1 or tyrosine, the reaction between HRP and TMB occurred more quickly than the control, as well as in the highest concentration of LAF-1, the evolution of a peak at 482 nm. The analysis through MALDI-TOF spectrometry showed the development of a second peak likely due to the reaction between LAF-1 and TMB, as the Δ between the peaks is 229 Da and the size of the TMB species is 240 Da.

ContributorsDavis, Morgan (Author) / Ghirlanda, Giovanna (Thesis director) / Heyden, Matthias (Committee member) / Mazor, Yuval (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor)
Created2022-12
Description

The objective of this study is to create a spectrophotometric assay that can measure quinone reduction in the HbRC. The key techniques used in the project consisted of a PCR, a pseudo golden gate, a transformation into E. coli, a conjugation into Heliomicrobium modesticaldum, a growth study, a HbRC prep,

The objective of this study is to create a spectrophotometric assay that can measure quinone reduction in the HbRC. The key techniques used in the project consisted of a PCR, a pseudo golden gate, a transformation into E. coli, a conjugation into Heliomicrobium modesticaldum, a growth study, a HbRC prep, and absorbance spectroscopy. PCR was crucial for amplifying the Cyt c553-PshX gene for the pseudo golden gate. The pseudo golden gate ligated Cyt c553-PshX into the plasmid pMTL86251 in order to transform the plasmid with the desired gene into the E. coli strain S17-1. This E. coli strain allows for conjugation into H. modesticaldum. H. modesticaldum cannot uptake DNA by itself, so the E. coli creates a pilus to transfer the desired plasmid to H. modesticaldum. The growth study was crucial for determining if H. modesitcaldum could be induced using xylose without killing the cells or inhibiting the growth in such a way that the project could not be continued. The HbRC prep was used to isolate and purify the Cyt c553-PshX protein. Absorbance spectroscopy and JTS kinetic assay was used to characterize and confirm that the protein eluted from the affinity column was Cyt c553-PshX. The results of the absorbance spectra and JTS kinetic assay confirmed that Cyt c553-PshX was not made. The study is currently being continued using a new system that utilizes SpyCatcher SpyTag covalent linkages in order to attach cytochrome to reduce P800 to the HbRC.

ContributorsBarnes, Katherine (Author) / Redding, Kevin (Thesis director) / Mazor, Yuval (Committee member) / Singharoy, Abhishek (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of English (Contributor)
Created2022-12