Matching Items (14)
Filtering by

Clear all filters

189271-Thumbnail Image.png
Description
Based on past studies, urinary glycan biomarkers have the potential to be used as diagnostic and prognostic markers for treatment purposes. This study brought into play the bottom-up glycan node analysis approach to analyze 39 urine samples from COVID-19 positive and negative individuals using gas chromatography-mass spectrometry (GC-MS) to determine

Based on past studies, urinary glycan biomarkers have the potential to be used as diagnostic and prognostic markers for treatment purposes. This study brought into play the bottom-up glycan node analysis approach to analyze 39 urine samples from COVID-19 positive and negative individuals using gas chromatography-mass spectrometry (GC-MS) to determine potential urinary glycan biomarkers of COVID-19. Glycan node analysis involves chemically breaking down glycans in whole biospecimens in a way that conserves both monosaccharide identity and linkage information that facilitates the capture of unique glycan features as single analytical signals. Following data acquisition, the student t-test was done on all the nodes, but only four prominent nodes (t-Deoxyhexopyranose, 2,3-Gal, t-GlcNAc, and 3,6-GalNAc with respective p-values 0.03027, 0.03973, 0.0224, and 0.0004) were below the threshold p-value of 0.05 and showed some differences in the mean between both groups. To eliminate the probability of having false positive p-values, Bonferroni correction was done on the four nodes but only the 3,6-GalNAc node emerged as the only node that was below the newly adjusted p-value. Because sample analyses were done in batches, the Kruskal Wallis test was done to know if the batch effect was responsible for the observed lower relative concentration of 3,6-GalNAc in COVID-19 positive patients than in negative patients. A receiver operating characteristic curve (ROC) was plotted for the 3,6-GalNAc node and the area under the curve (AUC) was calculated to be 0.84, casting the 3,6-GalNAc node was a potential biomarker of COVID-19. 3,6-GalNAc largely arises from branched O-glycan core structures, which are abundant in mucin glycoproteins that line the urogenital tract. Lowered relative concentrations of 3,6-GalNAc in the urine of COVID-19 positive patients may be explained by compromised kidney function that allows non-mucinous glycoproteins from the blood to contribute a greater proportion of the relative glycan node signals than in COVID-19 negative patients. Future prospective clinical studies will be needed to validate both the biomarker findings and this hypothesis.
ContributorsEyonghebi Tanyi, Agbor (Author) / Borges, Chad R (Thesis advisor) / Mills, Jeremy H (Committee member) / Guo, Jia (Committee member) / Arizona State University (Publisher)
Created2023
190846-Thumbnail Image.png
Description
Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in microseconds is still relatively opaque. Methods to elucidate enzyme substrate

Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in microseconds is still relatively opaque. Methods to elucidate enzyme substrate specificity indicate that the shape of the active site and the amino acid residues therein play a major role. However, lessons from Directed Evolution experiments reveal the importance of residues far from the active site in modulating substrate specificity. Enzymes are dynamic macromolecules composed of networks of interactions integrating the active site, where the chemistry occurs, to the rest of the protein. The objective of this work is to develop computational methods to modify enzyme ligand specificity, either through molding the active site to accommodate a novel ligand, or by identifying distal mutations that can allosterically alter specificity. To this end, two homologues in the β-lactamase family of enzymes, TEM-1, and an ancestrally reconstructed variant, GNCA, were studied to identify whether the modulation of position-specific distal-residue flexibility could modify ligand specificity. RosettaDesign was used to create TEM-1 variants with altered dynamic patterns. Experimental characterization of ten designed proteins indicated that mutations to residues surrounding rigid, highly coupled residues substantially affected both enzymatic activity and stability. In contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Five of the TEM-1 variants were crystallized to see if the changes in function observed were due to architectural changes to the active site. In a second project, a computational platform using RosettaDesign was developed to remodel the firefly luciferase active site to accommodate novel luciferins. This platform resulted in the development of five luciferin-luciferase pairs with red-shifted emission maxima, ready for multicomponent bioluminescent imaging applications in tissues. Although the projects from this work focus on two classes of proteins, they provide insight into the structure-function relationship of ligand specificity in enzymes and are broadly applicable to other systems.
ContributorsKolbaba Kartchner, Bethany (Author) / Mills, Jeremy H (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Van Horn, Wade D (Committee member) / Arizona State University (Publisher)
Created2023
168433-Thumbnail Image.png
Description
Exposure of liquid biospecimens like plasma and serum (P/S) to improper handling and storage can impact the integrity of biomolecules, potentially leading to apparent quantitative changes of important clinical proteins. An accurate and quick estimate of the quality of biospecimens employed in biomarker discovery and validation studies is essential to

Exposure of liquid biospecimens like plasma and serum (P/S) to improper handling and storage can impact the integrity of biomolecules, potentially leading to apparent quantitative changes of important clinical proteins. An accurate and quick estimate of the quality of biospecimens employed in biomarker discovery and validation studies is essential to facilitating accurate conclusions. ΔS-Cys-Albumin is a marker of blood P/S exposure to thawed conditions that can quantitatively track the exposure of P/S to temperatures greater than their freezing point of -30 C. Reported here are studies carried out to evaluate the potential of ΔS-Cys-Albumin to track the stability of clinically important analytes present in P/S upon their exposure to thawed conditions. P/S samples obtained from both cancer-free donors and cancer patients were exposed to 23 C (room temperature), 4 C and -20 C degrees, and the degree to which the apparent concentrations of clinically relevant biomolecules present in P/S were impacted during the time it took ΔS-Cys-Albumin to reach zero was measured. Analyte concentrations measured by molecular interaction-based assays were significantly impacted when samples were exposed to the point where average ΔS-Cys-Albumin fell below 12% at each temperature. Furthermore, the percentage of proteins that became unstable with time under thawed conditions exhibited a strong inverse linear relationship to ΔS-Cys-Albumin, indicating that ΔS-Cys-Albumin can serve as an effective surrogate marker to track the stability of other clinically relevant proteins in plasma as well as to estimate the fraction of proteins that have been destabilized by exposure to thawed conditions, regardless of what the exposure temperature(s) may have been. These results indicated that P/S exposure to thawed conditions disrupts epitopes required for clinical protein quantification via molecular interaction-based assays. In continuation of this theme, a spurious binding event between two clinically important proteins, Apolipoprotein E (ApoE) and Interferon-  (IFN) present in human plasma under in vitro experimental conditions is also reported. The interaction was confirmed to be evident only when ApoE was expressed in vitro with a Glutathione-S-Transferase (GST) fusion tag. Future steps required to find the exact manner in which the GST fusion tag facilitated the association between ApoE and IFNγ are discussed with emphasis on the possible pitfalls associated with using fusion proteins for studying novel protein-protein interactions.
ContributorsKapuruge, Erandi Prasadini (Author) / Borges, Chad R (Thesis advisor) / LaBaer, Joshua (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2021
162007-Thumbnail Image.png
Description
Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to

Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to γ-carboxyglutamic acid (Gla) residues. This modification confers increased binding of Oc to Ca2+ and hydroxyapatite matrix. Presented here, novel metal binding partners Mn2+, Fe3+, and Cr3+ of human Oc were determined, while the previously identified binders to (generally) non-human Oc, Ca2+, Mg2+, Pb2+ and Al3+ were validated as binders to human Oc by direct infusion mass spectrometry with all metals binding with higher affinity to the post-translationally modified form (Gla-Oc) compared to the unmodified form (Glu-Oc). Oc was also found to form pentamer (Gla-Oc) and pentamer and tetramer (Glu-Oc) homomeric self-assemblies in the absence of NaCl, which disassembled to monomers in the presence of near physiological Na+ concentrations. Additionally, Oc was found to form filamentous structures in vitro by negative stain TEM in the presence of increased Ca2+ titrations in a Gla- and pH-dependent manner. Finally, by combining circular dichroism spectroscopy to determine the fraction of Gla-Oc bound, and inductively-coupled plasma mass spectrometry to quantify total Al concentrations, the data were fit to a single-site binding model and the equilibrium dissociation constant for Al3+ binding to human Gla-Oc was determined (Kd = 1.0 ± 0.12 nM). Including citrate, a known competitive binder of Al3+, maintained Al in solution and enabled calculation of free Al3+ concentrations using a Matlab script to solve the complex set of linear equations. To further improve Al solubility limits, the pH of the system was lowered to 4.5, the pH during bone resorption. Complementary binding experiments with Glu-Oc were not possible due to the observed precipitation of Glu-Oc at pH 4.5, although qualitatively if Glu-Oc binds Al3+, it is with much lower affinity compared to Gla-Oc. Taken together, the results presented here further support the importance of post-translational modification, and thus adequate nutritional intake of vitamin K, on the binding and self-assembly properties of human Oc.
ContributorsThibert, Stephanie (Author) / Borges, Chad R (Thesis advisor) / LaBaer, Joshua (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2021
156834-Thumbnail Image.png
Description
Exposure of blood plasma/serum (P/S) to thawed conditions, greater than -30°C, can produce biomolecular changes that misleadingly impact measurements of clinical markers within archived samples. Reported here is a low sample-volume, dilute-and-shoot, intact protein mass spectrometric assay of albumin proteoforms called “ΔS-Cys-Albumin” that quantifies cumulative exposure of archived P/S samples

Exposure of blood plasma/serum (P/S) to thawed conditions, greater than -30°C, can produce biomolecular changes that misleadingly impact measurements of clinical markers within archived samples. Reported here is a low sample-volume, dilute-and-shoot, intact protein mass spectrometric assay of albumin proteoforms called “ΔS-Cys-Albumin” that quantifies cumulative exposure of archived P/S samples to thawed conditions. The assay uses the fact that S-cysteinylation (oxidation) of albumin in P/S increases to a maximum value when exposed to temperatures greater than -30°C. The multi-reaction rate law that governs this albumin S-cysteinylation formation in P/S was determined and was shown to predict the rate of formation of S-cysteinylated albumin in P/S samples—a step that enables back-calculation of the time at which unknown P/S specimens have been exposed to room temperature. To emphasize the capability of this assay, a blind challenge demonstrated the ability of ΔS-Cys-Albumin to detect exposure of individual and grouped P/S samples to unfavorable storage conditions. The assay was also capable of detecting an anomaly in a case study of nominally pristine serum samples collected under NIH-sponsorship, demonstrating that empirical evidence is required to guarantee accurate knowledge of archived P/S biospecimen storage history.

The ex vivo glycation of human serum albumin was also investigated showing that P/S samples stored above their freezing point leads to significant increases in glycated albumin. These increases were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin—suggesting a role for oxidative glycation in the ex vivo glycation of albumin.
ContributorsJeffs, Joshua W (Author) / Borges, Chad R (Thesis advisor) / Van Horn, Wade (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2018
156855-Thumbnail Image.png
Description
The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting

The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting regulator of TRP channels) is a small

membrane protein that modifies TRPV1 responses to heat and TRPM8 responses to cold.

In this dissertation, the first direct measurements between PIRT and TRPM8 are

quantified with nuclear magnetic resonance and microscale thermophoresis. Using

Rosetta computational biology, TRPM8 is modeled with a regulatory, and functionally

essential, lipid named PIP2. Furthermore, a PIRT ligand screen identified several novel

small molecular binders for PIRT as well a protein named calmodulin. The ligand

screening results implicate PIRT in diverse physiological functions. Additionally, sparse

NMR data and state of the art Rosetta protocols were used to experimentally guide PIRT

structure predictions. Finally, the mechanism of thermosensing from the evolutionarily

conserved sensing domain of TRPV1 was investigated using NMR. The body of work

presented herein advances the understanding of thermosensing and TRP channel function

with TRP channel regulatory implications for PIRT.
ContributorsSisco, Nicholas John (Author) / Van Horn, Wade D (Thesis advisor) / Mills, Jeremy H (Committee member) / Wang, Xu (Committee member) / Yarger, Jeff L (Committee member) / Arizona State University (Publisher)
Created2018
157319-Thumbnail Image.png
Description
Cancer is a major public health challenge and the second leading cause of death in the United States. Large amount of effort has been made to achieve sensitive and specific detection of cancer, and to predict the course of cancer. Glycans are promising avenues toward the diagnosis and prognosis of

Cancer is a major public health challenge and the second leading cause of death in the United States. Large amount of effort has been made to achieve sensitive and specific detection of cancer, and to predict the course of cancer. Glycans are promising avenues toward the diagnosis and prognosis of cancer, because aberrant glycosylation is a prevalent hallmark of diverse types of cancer. A bottom-up “glycan node analysis” approach was employed as a useful tool, which captures most essential glycan features from blood plasma or serum (P/S) specimens and quantifies them as single analytical signals, to a lung cancer set from the Women Epidemiology Lung Cancer (WELCA) study. In addition, developments were performed to simplify a relatively cumbersome step involved in sample preparation of glycan node analysis. Furthermore, as a biomarker discovery research, one crucial concern of the glycan node analysis is to ensure that the specimen integrity has not been compromised for the employed P/S samples. A simple P/S integrity quality assurance assay was applied to the same sample set from WELCA study, which also afford the opportunity to evaluate the effects of different collection sites on sample integrity in a multisite clinical trial.

Here, 208 samples from lung cancer patients and 207 age-matched controls enrolled in the WELCA study were analyzed by glycan node analysis. Glycan features, quantified as single analytical signals, including 2-linked mannose, α2‐6 sialylation, β1‐4 branching, β1‐6 branching, 4-linked GlcNAc, and outer-arm fucosylation, exhibited abilities to distinguish lung cancer cases from controls and predict survival in patients.

To circumvent the laborious preparation steps for permethylation of glycan node analysis, a spin column-free (SCF) glycan permethylation procedure was developed, applicable to both intact glycan analysis or glycan node analysis, with improved or comparable permethylation efficiency relative to some widely-used spin column-based procedures.

Biospecimen integrity of the same set of plasma samples from WELCA study was evaluated by a simple intact protein assay (ΔS-Cysteinylated-Albumin), which quantifies cumulative exposure of P/S to thawed conditions (-30 °C). Notable differences were observed between different groups of samples with various initial handling/storage conditions, as well as among the different collection sites.
ContributorsHu, Yueming (Ph.D.) (Author) / Borges, Chad R (Thesis advisor) / Ros, Alexandra (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2019
156312-Thumbnail Image.png
Description
Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only

Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only marginally accessed source of cancer markers. The approach used in this dissertation, which is referred to as “glycan node analysis”, is a molecularly bottom-up approach to plasma/serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals.

The diagnostic utility of this approach as applied to lung cancer patients across all stages as well as prostate, serous ovarian, and pancreatic cancer patients compared to certifiably healthy individuals, nominally healthy individuals and/or risk-matched controls is reported. Markers for terminal fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching and outer-arm fucosylation were most able to differentiate cases from controls. These markers behaved in a stage-dependent manner in lung cancer as well as other types of cancer. Using a Cox proportional hazards regression model, the ability of these markers to predict progression and survival in lung cancer patients was assessed. In addition, the potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.

Plasma samples from former bladder cancer patients with currently no evidence of disease (NED), non-muscle invasive bladder cancer (NMIBC), and muscle invasive bladder cancer (MIBC) along with certifiably healthy controls were analyzed. Markers for α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from controls; but NED, NMIBC, and MIBC were not distinguished from one another. Markers for α2-6 sialylation and β1-6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. These two glycan features were found to be correlated to the concentration of C-reactive protein, a known prognostic marker for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
ContributorsRoshdiferdosi, Shadi (Author) / Borges, Chad R (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2018
157698-Thumbnail Image.png
Description
Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this dissertation was to develop protein-based strategies that can be applied

Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this dissertation was to develop protein-based strategies that can be applied in the production of green fuels. The first project of this dissertation aimed at developing a controllable strategy to incorporate domains with different functions (e. g. catalytic sites, electron transfer modules, light absorbing subunits) into a single multicomponent system. This was accomplished through the rational design of 2,2’-bipyridine modified dimeric peptides that allowed their metal-directed oligomerization by forming tris(bipyridine) complexes, thus resulting in the formation of a hexameric assembly.

Additionally, two different approaches to incorporate non-natural organometallic catalysts into protein matrix are discussed. First, cobalt protoporphyrin IX was incorporated into cytochrome b562 to produce a water-soluble proton and CO2 reduction catalyst that is active upon irradiation in the presence of a photosensitizer. The effect of the porphyrin axial ligands provided by the protein environment has been investigated by introducing mutations into the native scaffold, indicating that catalytic activity of proton reduction is dependent on axial coordination to the porphyrin. It is also shown that effects of the protein environment are not directly transferred when applied to other reactions, such as CO2 reduction.

Inspired by the active site of [FeFe]-hydrogenases, the second approach is based on the stereoselective preparation of a novel amino acid bearing a 1,2-benzenedithiol side chain. This moiety can serve as an anchoring point for the introduction of metal complexes into protein matrices. By doing so, this strategy enables the study of protein interactions with non-natural cofactors and the effects that it may have on catalysis. The work developed herein lays a foundation for furthering the study of the use of proteins as suitable environments for tuning the activity of organometallic catalysts in aqueous conditions, and interfacing these systems with other supporting units into supramolecular assemblies.
ContributorsAlcala-Torano, Rafael de Jesus (Author) / Ghirlanda, Giovanna (Thesis advisor) / Moore, Ana L (Committee member) / Mills, Jeremy H (Committee member) / Arizona State University (Publisher)
Created2019
157797-Thumbnail Image.png
Description
This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then the production of nanoparticles using the protein. This application of

This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then the production of nanoparticles using the protein. This application of protein requires extremely pure homogenous solution of the protein that was achieved using numerous protein separation techniques which were experimented with. Crystallization conditions, protein separation methods and protein characterization methods were all investigated along with the protein-nanoparticle interaction studies. The main protein of study here is GroEL and the inorganic nanoparticle used is platinum. Some studies on MBP producing gold nanoparticles from an ionic gold precursor were also conducted to get a better perspective on nanoparticle formation. Protein purification methods, crystallization conditions, Car-9 tag testing and protein characterization methods were all investigated along with the focus of this work. It was concluded that more Car9 studies need to be carried out before being used as in the form of a loop in the protein. The nanoparticle experiments were successful and platinum nanoparticles were successfully synthesized using GroEL. The direction of further research in protein-nanoparticle studies are outlined towards the end of the thesis.
ContributorsSirajudeen, Luqmanal Hakim (Author) / Nannenga, Brent L. (Thesis advisor) / Acharya, Abhinav P (Committee member) / Mills, Jeremy H (Committee member) / Arizona State University (Publisher)
Created2019