Matching Items (20)
Filtering by

Clear all filters

150658-Thumbnail Image.png
Description
V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2)

V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.
ContributorsWang, Guannan (Author) / Chang, Yung (Thesis advisor) / Levitus, Marcia (Committee member) / Misra, Rajeev (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2012
136532-Thumbnail Image.png
Description
Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008,

Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008, alternative sources for heparin are desired. In response, much research has been invested in the extraction of the naturally occurring polysaccharide, heparosan, from Escherichia coli K5 strain. As heparosan contains the same structural backbone as heparin, modifications can be made to produce heparin or heparin-like molecules from this source. Furthermore, isotopically labeled batches of heparosan can be produced to aid in protein-GAG interaction studies. In this study, a comparative look between extraction and purification methods of heparosan was taken. Fed-batch fermentation of this E. coli strain followed by subsequent purification yielded a final 13C/15N labeled batch of 90mg/L of heparosan which was then N-sulfated. Furthermore, a labeled sulfated disaccharide from this batch was utilized in a protein interaction study with CCL5. With NMR analysis, it was found that this heparin-like molecule interacted with CCL5 when its glucosamine residue was in a β-conformation. This represents an interaction reliant on a specific anomericity of this GAG molecule.
ContributorsHoffman, Kristin Michelle (Author) / Wang, Xu (Thesis director) / Cabirac, Gary (Committee member) / Morgan, Ashli (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137273-Thumbnail Image.png
Description
Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within the Cdc25 domain of the protein, the Dbl homology domain is vital for efficient auto-AMPylation activity, and the C-terminal proline-rich domain exhibits a complex regulatory function. The proline-rich domain alone also appears to be capable of catalyzing a separate, unidentified covalent self-modification using a fluorescent ATP analogue. Finally, SOS1 was shown to be capable of catalyzing the AMPylation of two endogenous human protein substrates: a ubiquitous, unidentified protein of ~49kDa and another breast-cancer specific, unidentified protein of ~28kDa.
ContributorsOber-Reynolds, Benjamin John (Author) / LaBaer, Joshua (Thesis director) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137546-Thumbnail Image.png
Description
In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen

In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen consumption rates of precancerous cells have elucidated outliers which predict the early onset of esophageal cancer.2 Single cell profiling can fit in to current pathology studies and can serve as a step along the way, much like PCR or gel assays, in detecting biomarkers earlier than current clinical methods.3 Measurement of these single cell metabolic rates is currently limited to 25 cells per experiment. It is the aim of this project to increase throughput from 25 cells to 225 cells per experiment via the implementation of new hardware and software which fit with current methods to allow the same experimental structure. Successful implementation of such methods will allow for more rapid and efficient data collection, facilitating quantitative results and nine times the yield from the same experimental manpower and funding. This document focuses on the implementation ultra high density (UHD) hardware consisting of a pneumatic molar design, angular adjustment features and a mechanical Z-stage. These components have produced the most encouraging results thus far and are the key changes in transitioning to higher throughput experiments.
ContributorsUeberroth, Benjamin Edward (Author) / Kelbauskas, Laimonas (Thesis director) / Ashili, Shashanka (Committee member) / Myers, Jakrey (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136921-Thumbnail Image.png
Description
Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest

Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest in understanding electron flow in the plastoquinol pool. In order to characterize this PTOX, polyclonal antibodies were developed. Expression of Synechococcus WH8102 PTOX in E. coli provided a useful means to harvest the protein required for antibody production. Once developed, the antibody was tested for limit of concentration, effectiveness in whole cell lysate, and overall specificity. The antibody raised against PTOX was able to detect as low as 10 pg of PTOX in SDS-PAGE, and could detect PTOX extracted from lysed Synechococcus WH8102. The production of this antibody could determine the localization of the PTOX in Synechococcus.
ContributorsKhan, Mohammad Iqbal (Author) / Moore, Thomas (Thesis director) / Redding, Kevin (Committee member) / Roberson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description
Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates

Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates of measles and mumps since it was introduced.
Current methods for IgG antibody detection include enzyme immunoassays (EIA) such as the commercially available Diamedix Immunosimplicity® Measles IgG test kit and the Diamedix Immunosimplicity® Mumps IgG test kit. EIAs generally provide high sensitivity and strong specificity, however, there is a need for rapid screening of measles and mumps specific immunity in outbreak and resource-limited areas which could be solved by use a point-of-care (POC) platform.
This study aims to optimize a point-of-care device for the multiplexed detection of MeV, MuV, and RuV IgG antibodies in sera and to compare the sensitivity to commercial enzyme immunoassays. The IgG antibody levels to MeV and MuV were measured using EIA test kits for a total of 44 healthy serum samples. Of the samples, 6% were seronegative for MeV-specific IgG antibodies and 75% were seronegative for MuV-specific antibodies, showing low correlation of IgG antibody levels between both viruses.
To improve the sensitivity of the POC device, multiple conjugated fluorescent secondary antibodies were tested with different surface chemistries. Signal detection was measured using the pre-developed four-site slide reader. Preliminary data show that Nile Red microspheres provide robust signal detection and should be the secondary antibody of choice when sera are tested for IgG antibodies using the POC platform in future work.
ContributorsBharaj, Tirinder K. (Author) / Anderson, Karen (Thesis director) / Green, Alexander (Committee member) / Ewaisha, Radwa (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133245-Thumbnail Image.png
Description
The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded in a nanopore. In order to translocate the GAG molecule

The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded in a nanopore. In order to translocate the GAG molecule through the nanopore, researchers have designed a scheme in which the GAG molecule of interest will be attached to the 5’ end of a DNA primer (figure 1) and the DNA primer will be extended by a biotinylated Φ29 DNA polymerase that is anchored in the nanoslit using streptavidin. This research project specifically is part of a larger project with the main goal of comparing the activity of the wild-type Φ29 DNA polymerase which I have expressed and purified with the mutated Φ29 DNA polymerase devoid of 3’ - 5’ exonuclease activity which was made by Dr. Deng.
ContributorsDadkhah Tirani, Farbod (Author) / Wang, Xu (Thesis director) / Zhang, Peiming (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132988-Thumbnail Image.png
Description
Extensive efforts have been made to develop efficient and low-cost methods for diagnostics to identify molecular biomarkers that are linked to a wide array of conditions, including cancer. A highly developed method includes utilizing the gene-editing enzyme CRISPR-Cas12a (Cpf1), which demonstrates double-stranded DNase activity with RuvC catalytic domain with high

Extensive efforts have been made to develop efficient and low-cost methods for diagnostics to identify molecular biomarkers that are linked to a wide array of conditions, including cancer. A highly developed method includes utilizing the gene-editing enzyme CRISPR-Cas12a (Cpf1), which demonstrates double-stranded DNase activity with RuvC catalytic domain with high sensitivity and specificity. This DNase activity is RNA-guided and requires a T-rich PAM site on the target sequence for functional cleavage. There have been recent efforts to utilize this DNase activity of Cas12a by combining it with isothermal amplification and analysis by lateral strip tests. This project examined CRISPR-based early detection of microRNA biomarkers. MicroRNA are short RNA molecules that have large roles in post-transcriptional gene regulation. However, due the short length of microRNA and its single-stranded nature, it is challenging to use Cas12a for microRNA detection using existing methods. Thus, this project investigated the potential of two microRNA detection strategies for recognition by CRISPR-Cas12a. These methods were microRNA-splinted ligation with polymerase chain reaction (PCR) and MicroRNA-specific reverse transcriptase PCR (RT-PCR). Gel imaging demonstrated effective amplification of ligated DNA through microRNA-splinted ligation with PCR/RPA. In addition, lateral strips tests showed effective cleavage of the target sequences by Cas12a. However, RT-PCR method demonstrated low amplification by PCR and inefficient poly(A) elongation. This project paves the way for the detection of an extensive range of microRNA biomarkers that are linked to an array of diseases. Future directions include analysis and modifications of RT-PCR method to improve experimental results, extending these detection methods to a larger range of microRNA sequences, and eventually utilizing them for detection in human samples.
ContributorsStaren, Michael Steven (Author) / Green, Alexander (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Diehnelt, Chris (Committee member) / School of Life Sciences (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135062-Thumbnail Image.png
Description
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.
ContributorsGrewal, Harneet (Co-author) / Loo, Yi Jia Valerie (Co-author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / Ferdosi, Shayesteh (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154884-Thumbnail Image.png
Description
Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions.

Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions. Current diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. Commercially available Diamedix Immunosimplicity® Measles IgG test kit has been shown to have 91.1% sensitivity and 93.8% specificity, with a positive predictive value of 88.7% and a negative predictive value of 90.9% on the basis of a PRN titer of 120. There is an increasing need for rapid screening for measles specific immunity in outbreak settings. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to three individual measles virus (MeV) proteins.

Measles virus (MeV) genes were subcloned into the pJFT7_nGST vector to generate N- terminal GST fusion proteins. Single MeV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured with mouse anti-GST mAb and sheep anti-mouse IgG. Relative light units (RLUs) as luminescence was measured. Antibodies to MeV antigens were measured in 40 serum samples from healthy subjects.

Protein expression of three MeV genes of interest was measured in comparison with vector control and statistical significance was determined using the Student’s t-test (p<0.05). N expressed at the highest level with an average RLU value of 3.01 x 109 (p<0.001) and all proteins were expressed at least 50% greater than vector control (4.56 x 106 RLU). 36/40 serum samples had IgG to N (Ag:GST ratio>1.21), F (Ag:GST ratio>1.92), or H (Ag:GST ratio> 1.23).

These data indicate that the in vitro expression of MeV antigens, N, F, and H, were markedly improved by subcloning into pJFT7_nGST vector to generate N-terminal GST fusion proteins. The expression of single MeV genes N, F and H, are suitable antigens for serologic capture analysis of measles-specific antibodies. These preliminary data can be used to design a more intensive study to explore the possibilities of using these MeV antigens as a diagnostic marker.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2016