Matching Items (6)
Filtering by

Clear all filters

137802-Thumbnail Image.png
Description
Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer

Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer patients were used to discover these tumor associated biomarkers on protein microarrays. Six candidate biomarkers were discovered from 22 heavy chain-only variable region antibody fragments screened. Validation tests are necessary to confirm the tumorgenicity of these antigens. However, the use of single-chain variable autoantibody fragments presents a novel platform for diagnostics and cancer therapeutics.
ContributorsSharman, M. Camila (Author) / Magee, Dewey (Mitch) (Thesis director) / Wallstrom, Garrick (Committee member) / Petritis, Brianne (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / Virginia G. Piper Center for Personalized Diagnostics (Contributor) / Biodesign Institute (Contributor)
Created2012-12
137821-Thumbnail Image.png
Description
Time spent alone is a topic that has been studied in great detail, particularly the manner in which it is spent and the effect it has during the adolescent stage of life. Similarly, stress levels in adolescents have always been a topic of interest because of the effects they could

Time spent alone is a topic that has been studied in great detail, particularly the manner in which it is spent and the effect it has during the adolescent stage of life. Similarly, stress levels in adolescents have always been a topic of interest because of the effects they could have on the individual later in adulthood. Oddly enough however, the two areas of study have never been looked at in relation to one another. This study will look at different types of alone time as possible stressors in a community sample (N=82) of adolescents transitioning to college. The data on time alone and stress levels was collected through diary reports over a period of 3 days. The analysis only yielded significant effects for females and only for specific categories. It was found that females experience the lowest amount of perceived stress when they are alone and want to be alone, they have more negative affect when their desired environment differs from their current situation, and more positive affect in both the alone incongruence and not alone congruence situations. These results indicate that only women experience stress and affect changes when they encounter different congruent and incongruent environments.
ContributorsVanderwerf, Jennifer (Author) / Doane, Leah (Thesis director) / Knight, George (Committee member) / Arbona, P. Anita (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
149368-Thumbnail Image.png
Description
In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on

In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on three structures: PSI and PSII from the thermophilic cyanobacterium Thermosynechococcus elonagatus and the PSI/light harvesting complex I (PSI-LHCI) of the plant, Pisum sativum. To improve the knowledge of these important membrane protein complexes from a wider spectrum of photosynthetic organisms, photosynthetic apparatus of the thermo-acidophilic red alga, Galdieria sulphuraria and the green alga, Chlamydomonas reinhardtii were studied. Galdieria sulphuraria grows in extreme habitats such as hot sulfur springs with pH values from 0 to 4 and temperatures up to 56°C. In this study, both membrane protein complexes, PSI and PSII were isolated from this organism and characterized. Ultra-fast fluorescence spectroscopy and electron microscopy studies of PSI-LHCI supercomplexes illustrate how this organism has adapted to low light environmental conditions by tightly coupling PSI and LHC, which have not been observed in any organism so far. This result highlights the importance of structure-function relationships in different ecosystems. Galdieria sulphuraria PSII was used as a model protein to show the amenability of integral membrane proteins to top-down mass spectrometry. G.sulphuraria PSII has been characterized with unprecedented detail with identification of post translational modification of all the PSII subunits. This study is a technology advancement paving the way for the usage of top-down mass spectrometry for characterization of other large integral membrane proteins. The green alga, Chlamydomonas reinhardtii is widely used as a model for eukaryotic photosynthesis and results from this organism can be extrapolated to other eukaryotes, especially agricultural crops. Structural and functional studies on the PSI-LHCI complex of C.reinhardtii grown under high salt conditions were studied using ultra-fast fluorescence spectroscopy, circular dichroism and MALDI-TOF. Results revealed that pigment-pigment interactions in light harvesting complexes are disrupted and the acceptor side (ferredoxin docking side) is damaged under high salt conditions.
ContributorsThangaraj, Balakumar (Author) / Fromme, Petra (Thesis advisor) / Shock, Everett (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2010
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023
156470-Thumbnail Image.png
Description
Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology, though their interpretation is often tricky. Many lipid structures are

Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology, though their interpretation is often tricky. Many lipid structures are shared among organisms and function in many geochemical conditions and extremes. I argue it is useful to interpret lipid distributions as a balance of functional necessity and energy cost. This work utilizes a quantitative thermodynamic framework for interpreting energetically driven adaptation in lipids.

Yellowstone National Park is a prime location to study biological adaptations to a wide range of temperatures and geochemical conditions. Lipids were extracted and quantified from thermophilic microbial communities sampled along the temperature (29-91°C) and chemical gradients of four alkaline Yellowstone hot springs. I observed that decreased alkyl chain carbon content, increased degree of unsaturation, and a shift from ether to ester linkage caused a downstream increase in the average oxidation state of carbon (ZC) I hypothesized these adaptations were selected because they represent cost-effective solutions to providing thermostable membranes.

This hypothesis was explored by assessing the relative energetic favorability of autotrophic reactions to form alkyl chains from known concentrations of dissolved inorganic species at elevated temperatures. I found that the oxidation-reduction potential (Eh) predicted to favor formation of sample-representative alkyl chains had a strong positive correlation with Eh calculated from hot spring water chemistry (R2 = 0.72 for the O2/H2O redox couple). A separate thermodynamic analysis of bacteriohopanepolyol lipids found that predicted equilibrium abundances of observed polar headgroup distributions were also highly correlated with Eh of the surrounding water (R2= 0.84). These results represent the first quantitative thermodynamic assessment of microbial lipid adaptation in natural systems and suggest that observed lipid distributions represent energetically cost-effective assemblages along temperature and chemical gradients.
ContributorsBoyer, Grayson Maxwell (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
137862-Thumbnail Image.png
Description
The purpose of my honors thesis project was to generate the tools needed for in vivo imaging by determining the optimal plasmid-fluorophore combination. To determine the optimal plasmid and fluorophore, asd plasmids were constructed with various promoters, origins of replications, and red fluorophores. The optimal asd plasmid for fluorescent in

The purpose of my honors thesis project was to generate the tools needed for in vivo imaging by determining the optimal plasmid-fluorophore combination. To determine the optimal plasmid and fluorophore, asd plasmids were constructed with various promoters, origins of replications, and red fluorophores. The optimal asd plasmid for fluorescent in vivo imaging was determined by the plasmid stability, growth rate, and growth phase dependence on fluorescent intensity. The end goal is to be able to use the asd plasmid in vaccine strains for the purpose of in vivo imaging of the recombinant attenuated Salmonella vaccine (RASV).
ContributorsEudy, L. Adam (Author) / Curtiss, Roy (Thesis director) / Roland, Kenneth (Committee member) / Forbes, Stephen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12