Matching Items (278)
Filtering by

Clear all filters

158211-Thumbnail Image.png
Description
Eosinophils are innate immune cells that are most commonly associated with parasite infection and allergic responses. Recent studies, though, have identified eosinophils as cells with diverse effector functions at baseline and in disease. Eosinophils in specific tissue immune environments are proposed to promote unique and specific effector functions, suggesting these

Eosinophils are innate immune cells that are most commonly associated with parasite infection and allergic responses. Recent studies, though, have identified eosinophils as cells with diverse effector functions at baseline and in disease. Eosinophils in specific tissue immune environments are proposed to promote unique and specific effector functions, suggesting these cells have the capacity to differentiate into unique subtypes. The studies here focus on defining these subtypes using functional, molecular, and genetic analysis as well as using novel techniques to image these subtypes in situ.

To characterized these subtypes, an in vitro cytokine induced type 1 (E1) and type 2 (E2) eosinophil model was developed that display features and functions of eosinophils found in vivo. For example, E1 eosinophils secrete type 1 mediators (e.g., IL-12, CXCL9 and CXCL10), express iNOS and express increased levels of the surface molecules PDL1 and MHC-I. Conversely, E2 eosinophils release type 2 mediators (e.g., IL4, IL13, CCL17, and CCL22), degranulate and express increased surface molecules CD11b, ST2 and Siglec-F. Completion of differential expression analysis of RNAseq on these subtypes revealed 500 and 655 unique genes were upregulated in E1 and E2 eosinophils, respectively. Functional enrichment studies showed interferon regulatory factor (IRF) transcription factors were uniquely regulated in both mouse and human E1 and E2 eosinophils. These subtypes are sensitive to their environment, modulating their IRF and cell surface expression when stimulated with opposing cytokines, suggesting plasticity.

To identify and study these subtypes in situ, chromogenic and fluorescent eosinophil-specific immunostaining protocols were developed. Methods were created and optimized, here, to identify eosinophils by their granule proteins in formalin fixed mouse tissues. Yet, eosinophil-specific antibodies alone are not enough to identify and study the complex interactions eosinophil subtypes perform within a tissue. Therefore, as part of this thesis, a novel highly-multiplexed immunohistochemistry technique was developed utilizing cleavable linkers to address these concerns. This technique is capable of analyzing up to 22 markers within a single biopsy with single-cell resolution. With this approach, eosinophil subtypes can be studied in situ in routine patient biopsies.
ContributorsNAZAROFF, CHRISTOPHER D. (Author) / Guo, Jia (Thesis advisor) / Rank, Matthew A (Thesis advisor) / LaBaer, Joshua (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2020
158015-Thumbnail Image.png
Description
Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin

Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin αMβ2 (Mac-1) is the most promiscuous member. In contrast to other integrins, Mac1 is unique with respect to its preference for cationic ligands. In this thesis, a new Mac-1 cationic ligand named pleiotrophin (PTN) is uncovered. PTN is an important cytokine and growth factor. Its activities in mitogenesis and angiogenesis have been extensively researched, but its function on immune cells was not widely explored. In this research, the cell biology and biochemical evidences show that PTN can regulate various Mac-1-expressing cells functions through the activation of the extracellular signal regulated kinases. Direct interactions between PTN and the αM I-domain, the major ligand-binding domain of Mac-1, has been shown using biolayer interferometry analyses and confirmed by solution NMR spectroscopy. The binding epitopes and the binding mechanism of PTN and αM I-domain interaction were further revealed by peptide array analysis and microscale thermophoresis. The data suggested that PTN’s thrombospondin type-1 repeat (TSR) domains and αM I-domain metal-ion-dependent adhesion site (MIDAS) are the major binding sites. In addition, this interaction followed a novel metal-ion independent binding mechanism which has not been found in other integrins. After a series of characterizations of αM I-domain using both experimental and computational methods, it showed that activated αM I-domain is significantly more dynamic than inactive αM I-domain, and the dynamics seem to modulate the effect of Mg2+ on its interactions with cationic ligands. To further explore the PTN induced Mac-1 structure rearrangement, intact Mac-1 was studied by negative stain electron microscopy. The results showed that the Mac-1 exhibited a very heterogeneous conformation distribution in detergents. In contrast, the Mac-1 adopted predominantly the bent conformation in phospholipid nanodisc condition. This Mac-1 nanodisc model provides a new platform for studying intact Mac-1 activation mechanism in a more physiologically relevant manner in the future.
ContributorsShen, Di (Author) / Wang, Xu (Thesis advisor) / Van Horn, Wade (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2020
161264-Thumbnail Image.png
Description
Glycans are complex biological sugar polymers that are commonly found covalently attached to proteins, lipids, and lipoproteins. About 50% of all mammalian proteins are glycosylated. Aberrant glycosylation is a hallmark of most types of cancer, and glycosylation changes that occur in this disease are known to facilitate tumor development. In

Glycans are complex biological sugar polymers that are commonly found covalently attached to proteins, lipids, and lipoproteins. About 50% of all mammalian proteins are glycosylated. Aberrant glycosylation is a hallmark of most types of cancer, and glycosylation changes that occur in this disease are known to facilitate tumor development. In this dissertation, a bottom-up approach to glycomics, “glycan node analysis”, which is a method based on glycan linkage analysis that quantifies unique glycan features, such as “core fucosylation”, “α2-6 sialylation”, “β1-6 branching”, and “bisecting GlcNAc”, as single analytical signals by gas chromatography-mass spectrometry (GC-MS), was applied to cancer cell lines, antibodies, extracellular vesicles, and low density lipoproteins to understand the mechanisms leading to aberrant glycosylation in cancer, and to understand the role of blood plasma glycan sialylation in cancer immunity. Specific tumor antigens such as β1-6-branching, β1-4-branching, bisecting GlcNAc, antennary fucosylation, and Tn antigen (GalNAc-Ser/Thr), were found to be regulated by IL-6 in HepG2 cells; fewer glycan features were regulated by IL-1β. Additionally, neuraminidase enzyme treatment of alpha-1 antitrypsin IgG demonstrates how glycan node analysis can be used to detect relative changes in “α2-6-sialylation” along with corresponding increases in terminal galactose. Extracellular vesicles (EVs) derived from metastatic and non-metastatic cancer cell lines displayed upregulated or downregulated expression of several specific glycan nodes, particularly 3-GlcNAc, which represents hyaluronic acid. EVs displayed several glycan features that distinguished them from the whole blood plasma glycome. These results were promising for developing new diagnostic strategies in cancer. A “liquid phase permethylation” procedure for glycan node analysis that does not require spin columns was applied for the first time to whole biological specimens, and it demonstrated potential clinical utility in detecting specific tumor antigens. Significantly different glycan node profiles were found among three cancer cell lines and in peripheral blood mononuclear cells from healthy donors. Changes in glycosylation and mechanisms regulating glycan changes were studied extensively in cancer cells. Subsequently, it is reported how glycosylation changes can have an impact in cancer immunity. A novel role for oxidized-desialylated low density lipoprotein in cancer immunity is reported, and its implications in cancer and atherosclerosis are discussed.
ContributorsAguilar Diaz de leon, Jesús Salvador (Author) / Borges, Chad R (Thesis advisor) / Williams, Peter (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2021
161272-Thumbnail Image.png
Description
Staphylococcus aureus permanently asymptomatically colonizes one-third of humans, yet is an opportunistic pathogen causing life threatening diseases. Diagnosing S. aureus infections requires differentiating S. aureus from the human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all people. These studies aimed to characterize the volatile metabolites of S. aureus

Staphylococcus aureus permanently asymptomatically colonizes one-third of humans, yet is an opportunistic pathogen causing life threatening diseases. Diagnosing S. aureus infections requires differentiating S. aureus from the human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all people. These studies aimed to characterize the volatile metabolites of S. aureus and S. epidermidis, and to measure the influence of growth medium on the discovery of volatile organic compounds that differentiate them. Headspace solid-phase microextraction and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detected 337 S. aureus and S. epidermidis headspace volatiles produced during aerobic growth in four complex media. Analyses revealed that only 20 – 40% of staph volatiles are produced by both species in any one medium. Using principal components and hierarchical clustering analyses of the staphylococcal volatiles showed individual clustering of S. aureus and S. epidermidis independent of culturing media but clustering of replicate cultures by growth medium within species. Subsets of volatiles produced in common by both species, or in common across all four media, revealed volatilome differences between S. aureus and S. epidermidis based on the volatiles’ relative abundances. When analyzing volatiles by relative abundances, culturing staph in media containing free glucose (brain heart infusion and tryptic soy broth) revealed volatilomes dominated by acids and esters (67%). The low-glucose media (lysogeny broth and Mueller-Hinton broth) yielded ketones in greatest relative abundances, yet also produced highly dissimilar volatilome compositions. The staphylococcal volatilome is strongly influenced by the nutritional composition of growth medium, especially free glucose availability, which is robustly evident when analyzing the relative abundances of the volatiles, compared to their presence versus absence. Future work will evaluate more strains of each species, testing the universality of these results. Prospective analyses involve hypotheses testing on the role of catabolite repression control and glucose availability on the volatilome, with plans to model in vitro culture conditions that replicate in vivo volatilomes. Studies assessing correlations of virulence to species-specific volatilome responses to free glucose may identify pathogenic strains of S. epidermidis and other staphylococcal commensals.
ContributorsJenkins, Carrie L. (Author) / Bean, Heather D (Thesis advisor) / Buetow, Kenneth H (Committee member) / Lake, Douglas (Committee member) / Wilson-Rawls, Jeanne (Committee member) / Arizona State University (Publisher)
Created2021
161247-Thumbnail Image.png
Description
The list of applications of plasmonic nanoparticles in the fields of energy research, sensing, and diagnostics and therapeutics is continuously growing. Processes for the synthesis of the nanoparticles for such applications should incorporate provision to easily functionalize the particle formed and should ideally not use toxic reagents or create toxic

The list of applications of plasmonic nanoparticles in the fields of energy research, sensing, and diagnostics and therapeutics is continuously growing. Processes for the synthesis of the nanoparticles for such applications should incorporate provision to easily functionalize the particle formed and should ideally not use toxic reagents or create toxic by-products. The traditional methods of synthesizing nanoparticles generally are energy inefficient, requires stringent conditions such as high temperature, pressure or extreme pH and often produces toxic by-products. Although there exist a few solution-based methods to solve this problem, there is one avenue which has recently gained attention for nanoparticle synthesis: using biomolecules to facilitate nanomaterials synthesis. Using biomolecules for synthesis can provide a template to guide the nucleation process and helps to keep conditions biocompatible while also combining the step of functionalization of the nanoparticle with its synthesis through the biomolecule itself. The dissertation focuses on studying the bio-templated synthesis of two such noble metal nanoparticle which have biomedical applications: gold and platinum. In chapter 2, Gold Nanoparticles (GNP), with long-term stability, were synthesized using Maltose Binding Protein (MBP) as templating agent. The site of gold interaction on MBP was identified by X-ray crystallography. A novel gold binding peptide, AT1 (YPFGGSGGSGM), was designed based on the orientation of the residues in the gold binding site, identified through crystallography. This designed peptide was also shown to have stabilized and affected the growth rate of GNP formation, in similar manner to MBP. Further in chapter 3, a nanosensor was formulated using a variation of this GNP-MBP system, to detect and measure ionizing radiation dose for cancer radiation therapy. Upon exposure to therapeutic levels of ionizing radiation, the MBP‐based sensor system formed gold nanoparticles with a dose‐dependent color that could be used to predict the amount of delivered X‐ray dose. In chapter 4, a similar system of protein templated synthesis was introduced for platinum nanoparticle (PtNP). Here, GroEL, a large homo-tetradecamer chaperone from E.coli, was used as templating and stabilizing agent for reduction of K2PtCl4 ions to form PtNP. To understand how GroEL interacts with the PtNPs and thereby stabilizes them, single-particle cryo-electron microscopy technique was used to model the complex in solution. A 3.8-Å resolution 3D cryo-EM map of GroEL depicting the location of PtNP inside its central cylindrical cavity was obtained. Fitting a GroEL model to the map revealed Arginine-268 from two adjacent subunits of GroEL interacting with the PtNP surface. Finally in chapter 5, a solution to the potential issues of single particle data processing on protein nanoparticle complexes, specifically with 2D classification, was developed by creating masking algorithms.
ContributorsThaker, Amar Nilkamal (Author) / Nannenga, Brent L (Thesis advisor) / Acharya, Abhinav (Committee member) / Torres, Cesar (Committee member) / Mills, Jeremy (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2020
161254-Thumbnail Image.png
Description
Hydrogenase enzymes capable of catalyzing proton reduction to produce H2 have generated a considerable interest due to increasing motivation in finding sustainable carbon free energy sources. A considerable amount of research has been focused on producing synthetic structures mimicking the hydrogenase catalytic site, but the activity seen in hydrogenase enzymes

Hydrogenase enzymes capable of catalyzing proton reduction to produce H2 have generated a considerable interest due to increasing motivation in finding sustainable carbon free energy sources. A considerable amount of research has been focused on producing synthetic structures mimicking the hydrogenase catalytic site, but the activity seen in hydrogenase enzymes in aqueous near neutral pH has yet to be replicated. It is now clear that the protein structure surrounding the H-cluster enables the high activity by fine tuning characteristics of the catalyst, but the structure and complexity of hydrogenase enzymes makes it difficult to predict exactly how the secondary coordination sphere affects catalysis. This work looks at incorporating both synthetic molecular catalysts and hydrogenase mimics into peptide scaffolds to improve the activity for photo-driven H2 production in aqueous solutions. The first chapter of this dissertation shows a de novo heme binding peptide improving the activity of cobalt protoporphyrin IX (CoPPIX) upon coordination inside a four-helix bundle. The peptide bound CoPPIX exhibited a 5.5-fold increase in anaerobic and an 8.3-fold increase in aerobic activity compared to free CoPPIX, while also showing dramatic increases to stability and solubility. In the second chapter, this work is expanded by using a randomly mutated cytochrome b562 library to identify beneficial attributes for downstream implementation of an ideal coordination site. A high-throughput assay was developed to measure H2 production using WO3/Pd deposited on a glass plate for a colorimetric first-pass screen. This assay successfully measured H2 production from CoPPIX bound cytochrome b562 in the periplasm of cells and identified a possible mutant showing 70% more H2 production compared to the wildtype. The third chapter incorporated a hydrogenase mimic into a four-helix bundle using a semi-synthetic strategy yielding a 3-fold increase in activity due to catalyst encapsulation. The method created will allow for easy modifications to the synthetic catalyst or peptide sequence in future work. The systems developed in this work were designed to facilitate the identification and implementation of beneficial characteristics for future development of an optimal secondary coordination sphere for a peptide bound molecular catalyst.
ContributorsHalloran, Nicholas Ryan (Author) / Ghirlanda, Giovanna (Thesis advisor) / Mills, Jeremy H (Committee member) / Moore, Gary F (Committee member) / Arizona State University (Publisher)
Created2021
161526-Thumbnail Image.png
Description
Since its conception over a century ago, X-ray crystallography (XRC) has become the most successful method used to elucidate the structures and functions of biological molecules at atomic resolution. The extensive use of XRC has led to meaningful discoveries across many scientific fields, notably its contributions to rational drug design.

Since its conception over a century ago, X-ray crystallography (XRC) has become the most successful method used to elucidate the structures and functions of biological molecules at atomic resolution. The extensive use of XRC has led to meaningful discoveries across many scientific fields, notably its contributions to rational drug design. Traditional drug discovery relies on the use of trial-and-error based approaches in cellular and animal models of disease to identify chemical probes that elicit desirable therapeutic effects based off changes in phenotype. However, this approach lacks critical information in regards to the biological target in which the compound interacts with. In contrast, the use of rational drug design presents the opportunity to identify chemical probes that target specific protein targets of known medical importance and study their interactions using three dimensional structures that can be used to suggest new drug candidates. The main focus of my research presented in this dissertation aims to utilize XRC to discover novel therapeutics. In this work, I begin by describing the use of structure-based drug discovery for the rational design of hydrocarbon-stapled peptides that block Focal Adhesion Kinase (FAK) scaffolding in cancer (Chapter 2). FAK is an intracellular tyrosine kinase that has been linked to many cancers through its interaction with Paxillin LD motifs as it relates to tumor growth, invasion, metastasis, and suppression of apoptosis. The results of this study demonstrate the effectiveness hydrocarbon-stapling has on the native Paxillin LD2 sequence with ~50 fold greater binding affinity by surface plasmon resonance (SPR) that can be explained by the unique structural interactions observed by XRC. Next, I present a series of methods which lays the foundations for the discovery of novel anti-bacterial drugs that target 3-Deoxy-D-manno-octulosonate-8-phosphate (KDO8P) Synthase, a critical enzyme in the biosynthesis of gram-negative lipopolysaccharides (Chapter 3).
ContributorsThifault, Darren G. (Author) / Fromme, Petra (Thesis advisor) / Mills, Jeremy (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2021
161450-Thumbnail Image.png
Description
Since the conception of DNA nanotechnology, the field has evolved towards the development of complex, dynamic 3D structures. The predictability of Watson-Crick base pairing makes DNA an unparalleled building block, and enables exceptional programmability in nanostructure shape and size. The work presented in this dissertation focuses on expanding two

Since the conception of DNA nanotechnology, the field has evolved towards the development of complex, dynamic 3D structures. The predictability of Watson-Crick base pairing makes DNA an unparalleled building block, and enables exceptional programmability in nanostructure shape and size. The work presented in this dissertation focuses on expanding two facets of the field: (1) introducing functionality through the incorporation of peptides to create DNA-peptide hybrid materials, and (2) the development of self-assembling DNA crystal lattices for scaffolding biomolecules. DNA nanostructures have long been proposed as drug delivery vehicles; however, they are not biocompatible because of their low stability in low salt environments and entrapment within the endosome. To address these issues, a functionalized peptide coating was designed to act as a counterion to a six-helix bundle, while simultaneously displaying numerous copies of an endosomal escape peptide to enable cytosolic delivery. This functionalized peptide coating creates a DNA-peptide hybrid material, but does not allow specific positioning or orientation of the peptides. The ability to control those aspects required the synthesis of DNA-peptide or DNA-peptide-DNA conjugates that can be incorporated into the nanostructure. The approach was utilized to produce a synbody where three peptides that bind transferrin with micromolar affinity, which were presented for multivalent binding to optimize affinity. Additionally, two DNA handle was attached to an enzymatically cleavable peptide to link two unique nanostructures. The second DNA handle was also used to constrain the peptide in a cyclic fashion to mimic the cell-adhesive conformations of RGD and PHSRN in fibronectin. The original goal of DNA nanotechnology was to use a crystalline lattice made of DNA to host proteins for their structural determination using X-ray crystallography. The work presented here takes significant steps towards achieving this goal, including elucidating design rules to control cavity size within the scaffold for accommodating guest molecules of unique sizes, approaches to improve the atomic detail of the scaffold, and strategies to modulate the symmetry of each unique lattice. Finally, this work surveys methodologies towards the incorporation of several guest molecules, with promising preliminary results that constitute a significant advancement towards the ultimate goal of the field.
ContributorsMacCulloch, Tara Lynn (Author) / Stephanopoulos, Nicholas (Thesis advisor) / Borges, Chad (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2021
161565-Thumbnail Image.png
Description
Over the past four decades, DNA nanotechnology has grown exponentially from a field focused on simple structures to one capable of synthesizing complex nano-machines capable of drug delivery, nano-robotics, digital data storage, logic gated circuitry, nano-photonics, and other applications. The construction of these nanostructures is possible because of the predictable

Over the past four decades, DNA nanotechnology has grown exponentially from a field focused on simple structures to one capable of synthesizing complex nano-machines capable of drug delivery, nano-robotics, digital data storage, logic gated circuitry, nano-photonics, and other applications. The construction of these nanostructures is possible because of the predictable and programmable Watson-Crick base pairing of DNA. However, there is an increasing need for the incorporation of chemical diversity and functionality into these nanostructures. To overcome this challenge, this work explored creating hybrid DNA nanostructures by making self-assembling small molecule/protein-DNA conjugates.In one direction, well studied host-guest interactions (i.e. cucurbituril[7]-adamantane) were used as the choice of self-assembling species. Binding studies using these small molecule-DNA conjugates were performed and thereafter they were used to assemble larger DNA origami nanostructures. Finally, a stimulus responsive DNA nano-box that opens and closes based on these interactions was also demonstrated. In another direction, a trimeric KDPG aldolase protein-DNA conjugate was probed as a structural building block by assembling it into a DNA origami tetrahedron with four cavities. This hybrid building block was thereafter characterized by single particle cryo-EM and the resulting electron density map was best fit by simulating origami cages with varying number of proteins (ranging from 0 to 4). Next, to increase access and for larger democratization of the field, an automation designer software tool capable of making DNA nanostructures was made. In this work, the focus was on making curved 3D DNA nanostructures. The last direction probed in this work was to make optical metamaterials based on complex 3D DNA architectures. Realization of a self-assembled 3D tetrastack geometry is still an unachieved dream in the field of DNA self-assembly. Thus, this direction was probed using DNA origami icosahedrons. Finally, the work covered in my thesis probes multiple directions for advancing DNA nanotechnology, both fundamentally and for potential applications.
ContributorsNarayanan Pradeep, Raghu (Author) / Yan, Hao HY (Thesis advisor) / Stephanopoulos, Nicholas NS (Thesis advisor) / Liu, Yan YL (Committee member) / Mills, Jeremy JHM (Committee member) / Arizona State University (Publisher)
Created2021
161811-Thumbnail Image.png
Description
I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by

I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by metabolite analyses and confocal microscopy, demonstrating that the ebo gene cluster, was not only required for scytonemin biosynthesis, but was involved in the export of scytonemin monomers to the periplasm. Further, the product of gene scyE was also exported to the periplasm where it was responsible for terminal oxidative dimerization of the monomers. These results opened questions regarding the functional universality of the ebo cluster. To probe if it could play a similar role in organisms other than scytonemin producing cyanobacteria, I developed a bioinformatic pipeline (Functional Landscape And Neighbor Determining gEnomic Region Search; FLANDERS) and used it to scrutinize the neighboring regions of the ebo gene cluster in 90 different bacterial genomes for potentially informational features. Aside from the scytonemin operon and the edb cluster of Pseudomonas spp., responsible for nematode repellence, no known clusters were identified in genomic ebo neighbors, but many of the ebo adjacent regions were enriched in signal peptides for export, indicating a general functional connection between the ebo cluster and biosynthetic compartmentalization. Lastly, I investigated the regulatory span of the two-component regulator of the scytonemin operon (scyTCR) using RNAseq of scyTCR deletion mutants under UV induction. Surprisingly, the knockouts had decreased expression levels in many of the genes involved in hormogonia differentiation and in a putative multigene regulatory element, hcyA-D. This suggested that UV could be a cue for developmental motility responses in Nostoc, which I could confirm phenotypically. In fact, UV-A simultaneously elicited hormogonia differentiation and scytonemin production throughout a genetically homogenous population. I show through mutant analyses that the partner-switching mechanism coded for by hcyA-D acts as a hinge between the scytonemin and hormogonia based responses. Collectively, this dissertation contributes to the understanding of microbial adaptive responses to environmental stressors at the genetic and regulatory level, highlighting their phenomenological and mechanistic complexity.
ContributorsKlicki, Kevin (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Wilson, Melissa (Committee member) / Mukhopadhyay, Aindrila (Committee member) / Misra, Rajeev (Committee member) / Arizona State University (Publisher)
Created2021