Matching Items (8)
Filtering by

Clear all filters

134743-Thumbnail Image.png
Description
The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.
ContributorsRabinowitz, Joshua Avraam (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133531-Thumbnail Image.png
Description
Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.
ContributorsBrooks, Meilia Catherine (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Ghirlanda, Giovanna (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133038-Thumbnail Image.png
Description
Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that

Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that they do not have the correct cellular localization. The localization of PANK2 was studied through cellular fractionation. We found the precursor form of PANK2, pPANK2, appears to be anchored to the inner membrane of the mitochondria, and the mature form, mPANK2, is located in the inter-membrane space, IMS. However, the IMS of the PKAN causing mutants is completely devoid of mPANK2 which suggests some disease-causing mutations may be mislocalized. In addition, PANK2 catalyzes the first and rate limiting step in Coenzyme A biosynthesis, and in other studies, it has been shown that the CoA biosynthesis enzymes form a complex in yeast. Therefore, we also considered the possibility that PKAN-causing mutations that retain activity have altered interactions with the other CoA biosynthesis enzymes. Coimmunoprecipitation of the proteins in the pathway was done to determine if there were any interactions with PANK2. The results indicate that PANK2 does not directly interact with either PPCS or CoASY, the second and final enzymatic activities in the CoA biosynthesis pathway.
ContributorsHadziahmetovic, Una (Author) / Newbern, Jason (Thesis director) / Kruer, Michael (Thesis director) / Padilla-Lopez, Sergio (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132988-Thumbnail Image.png
Description
Extensive efforts have been made to develop efficient and low-cost methods for diagnostics to identify molecular biomarkers that are linked to a wide array of conditions, including cancer. A highly developed method includes utilizing the gene-editing enzyme CRISPR-Cas12a (Cpf1), which demonstrates double-stranded DNase activity with RuvC catalytic domain with high

Extensive efforts have been made to develop efficient and low-cost methods for diagnostics to identify molecular biomarkers that are linked to a wide array of conditions, including cancer. A highly developed method includes utilizing the gene-editing enzyme CRISPR-Cas12a (Cpf1), which demonstrates double-stranded DNase activity with RuvC catalytic domain with high sensitivity and specificity. This DNase activity is RNA-guided and requires a T-rich PAM site on the target sequence for functional cleavage. There have been recent efforts to utilize this DNase activity of Cas12a by combining it with isothermal amplification and analysis by lateral strip tests. This project examined CRISPR-based early detection of microRNA biomarkers. MicroRNA are short RNA molecules that have large roles in post-transcriptional gene regulation. However, due the short length of microRNA and its single-stranded nature, it is challenging to use Cas12a for microRNA detection using existing methods. Thus, this project investigated the potential of two microRNA detection strategies for recognition by CRISPR-Cas12a. These methods were microRNA-splinted ligation with polymerase chain reaction (PCR) and MicroRNA-specific reverse transcriptase PCR (RT-PCR). Gel imaging demonstrated effective amplification of ligated DNA through microRNA-splinted ligation with PCR/RPA. In addition, lateral strips tests showed effective cleavage of the target sequences by Cas12a. However, RT-PCR method demonstrated low amplification by PCR and inefficient poly(A) elongation. This project paves the way for the detection of an extensive range of microRNA biomarkers that are linked to an array of diseases. Future directions include analysis and modifications of RT-PCR method to improve experimental results, extending these detection methods to a larger range of microRNA sequences, and eventually utilizing them for detection in human samples.
ContributorsStaren, Michael Steven (Author) / Green, Alexander (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Diehnelt, Chris (Committee member) / School of Life Sciences (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135062-Thumbnail Image.png
Description
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.
ContributorsGrewal, Harneet (Co-author) / Loo, Yi Jia Valerie (Co-author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / Ferdosi, Shayesteh (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135762-Thumbnail Image.png
Description
Currently, treatment for multiple myeloma (MM), a hematological cancer, is limited to post-symptomatic chemotherapy combined with other pharmaceuticals and steroids. Even so, the immuno-depressing cancer can continue to proliferate, leading to a median survival period of two to five years. B cells in the bone marrow are responsible for generating

Currently, treatment for multiple myeloma (MM), a hematological cancer, is limited to post-symptomatic chemotherapy combined with other pharmaceuticals and steroids. Even so, the immuno-depressing cancer can continue to proliferate, leading to a median survival period of two to five years. B cells in the bone marrow are responsible for generating antigen-specific antibodies, but in MM the B cells express mutated, non-specific monoclonal antibodies. Therefore, it is hypothesized that antibody-based assay and therapy may be feasible for detecting and treating the disease. In this project, 330k peptide microarrays were used to ascertain the binding affinity of sera antibodies for MM patients with random sequence peptides; these results were then contrasted with normal donor assays to determine the "immunosignatures" for MM. From this data, high-binding peptides with target-specificity (high fluorescent intensity for one patient, low in all other patients and normal donors) were selected for two MM patients. These peptides were narrowed down to two lists of five (10 total peptides) to analyze in a synthetic antibody study. The rationale behind this originates from the idea that antibodies present specific binding sites on either of their branches, thus relating high binding peptides from the arrays to potential binding targets of the monoclonal antibodies. Furthermore, these peptides may be synthesized on a synthetic antibody scaffold with the potential to induce targeted delivery of radioactive or chemotherapeutic molecular tags to only myelomic B cells. If successful, this would provide a novel alternative to current treatments that is less invasive, has fewer side effects, more specifically targets the cause of MM, and reliably diagnoses the cancer in the presymptomatic stage.
ContributorsBerry, Jameson (Co-author) / Buelt, Allison (Co-author) / Johnston, Stephen (Thesis director) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135861-Thumbnail Image.png
Description
Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1).

Dielectrophoresis is a separations strategy that has the potential to separate small amounts of different proteins from each other. The forces at play in the channel used for dielectrophoresis are electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP). EOF is the force exerted on liquid from an applied potential (1). EP is the force exerted on charged particles in a uniform electric field (2). DEP is the force exerted on particles (charged and uncharged) in a non-uniform electric field (3). This experiment was focused on the testing of a new microfluidic device to see if it could improve the focusing of proteins in dielectrophoresis. It was predicted that the addition of a salt bridge would improve focusing by preventing the ions created by the electrolysis of water around the electrodes from interacting with the proteins and causing aggregation, among other problems. Control trials using the old device showed that electrolysis was likely occurring and was the causal agent for poor outcomes. After applying the electric potential for some time a pH front traveled through the channel causing aggregation of proteins and the current in the channel decreased rapidly, even while the voltage was held constant. The resistance in the channels of the control trials also slightly decreased over time, until the pH shift occurred, at which time it increased rapidly. Experimental trials with a new device that included salt bridges eliminated this pH front and had a roughly linear increase of current in the channel with the voltage applied. This device can now be used in future research with protein dielectrophoresis, including in the potential differentiation of different proteins. References: 1) Electroosmosis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 2) Electrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006. 3) Dielectrophoresis. Oxford Dictionary of Biochemistry and Molecular Biology. 2. Oxford University Press: Oxford, England. 2006.
ContributorsHayes, Katelyn Donna (Author) / Hayes, Mark (Thesis director) / Borges, Chad (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148322-Thumbnail Image.png
Description

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling and immunological defenses. Furthermore, there is evidence that machine learning and peptide microarrays can be used to make reliable predictions of where proteins could interact with each other without the definitive knowledge of the interactions. In this case, a neural network was used to predict the unknown binding interactions of TNFR2 onto LT-ɑ and TRAF2, and PD-L1 onto CD80, based off of the binding data from a sampling of protein-peptide interactions on a microarray. The accuracy and reliability of these predictions would rely on future research to confirm the interactions of these proteins, but the knowledge from these methods and predictions could have a future impact with regards to rational and structure-based drug design.

ContributorsPoweleit, Andrew Michael (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Chiu, Po-Lin (Committee member) / School of Molecular Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05