Matching Items (37)
Filtering by

Clear all filters

154913-Thumbnail Image.png
Description
Accurate virus detection is important for diagnosis in a timely manner to facilitate rapid interventions and treatments. RNA viruses affect an extensive amount of the world’s population, particularly in tropical countries where emerging infectious agents often arise. Current diagnostic methods have three main problems: they are time consuming, typically not

Accurate virus detection is important for diagnosis in a timely manner to facilitate rapid interventions and treatments. RNA viruses affect an extensive amount of the world’s population, particularly in tropical countries where emerging infectious agents often arise. Current diagnostic methods have three main problems: they are time consuming, typically not field-portable, and expensive. My research goal is to develop rapid, field-portable and cost sensitive diagnostic methods for RNA viruses. Herein, two different approaches to detect RNA viruses were proposed: Conjugated gold nanoparticles for detection of viral particles or virus-specific antibodies by monitoring changes in their optical properties, and Tentacle Probes coupled with qPCR for detection and differentiation of closely-related viral strains. The first approach was divided into two projects: the study and characterization of the gold nanoparticle-antibody system for detection of virus particles using dynamic light scattering (DLS) and UV-Vis spectrophotometry, and development of a detection method for antibodies using static light scattering (SLS) and antigen-conjugated gold nanoparticles. Bovine serum albumin (BSA) conjugated gold nanoparticles could successfully detect BSA-specific antibodies in vitro, and protein E from Dengue Virus serotype 2 conjugated gold nanoparticles could detect Dengue-specific antibodies, both in vitro and in serum samples. This method is more accurate than currently used detection methods such as dot blots. The second approach uses Tentacle Probes, which are modified molecular beacons, to detect with high specificity two different strains of Lymphocytic Choriomeningitis Virus (LCMV), Armstrong and Clone-13, which differ in only one nucleotide at the target sequence. We successfully designed and use Tentacle Probes for detection of both strains of LCMV, in vitro and in serum from infected mice. Moreover, detection of as little as 10% of Clone-13 strain was possible when diluted in 90% Armstrong strain. This approach enables the detection of different strains of virus even within a mixed quasispecies and may be important for improving intervention strategies for reducing disease. The detection methods provide rapid detection of viruses, including viral strains within mixed populations, and should enhance our ability in providing early responses to emerging infectious diseases due to RNA viruses including Zika or Dengue virus.
ContributorsFranco, Lina Stella (Author) / Mujica, Vladimiro (Thesis advisor) / Blattman, Joseph N (Thesis advisor) / Garcia, Antonio A. (Committee member) / Fromme, Petra (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2016
149368-Thumbnail Image.png
Description
In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on

In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on three structures: PSI and PSII from the thermophilic cyanobacterium Thermosynechococcus elonagatus and the PSI/light harvesting complex I (PSI-LHCI) of the plant, Pisum sativum. To improve the knowledge of these important membrane protein complexes from a wider spectrum of photosynthetic organisms, photosynthetic apparatus of the thermo-acidophilic red alga, Galdieria sulphuraria and the green alga, Chlamydomonas reinhardtii were studied. Galdieria sulphuraria grows in extreme habitats such as hot sulfur springs with pH values from 0 to 4 and temperatures up to 56°C. In this study, both membrane protein complexes, PSI and PSII were isolated from this organism and characterized. Ultra-fast fluorescence spectroscopy and electron microscopy studies of PSI-LHCI supercomplexes illustrate how this organism has adapted to low light environmental conditions by tightly coupling PSI and LHC, which have not been observed in any organism so far. This result highlights the importance of structure-function relationships in different ecosystems. Galdieria sulphuraria PSII was used as a model protein to show the amenability of integral membrane proteins to top-down mass spectrometry. G.sulphuraria PSII has been characterized with unprecedented detail with identification of post translational modification of all the PSII subunits. This study is a technology advancement paving the way for the usage of top-down mass spectrometry for characterization of other large integral membrane proteins. The green alga, Chlamydomonas reinhardtii is widely used as a model for eukaryotic photosynthesis and results from this organism can be extrapolated to other eukaryotes, especially agricultural crops. Structural and functional studies on the PSI-LHCI complex of C.reinhardtii grown under high salt conditions were studied using ultra-fast fluorescence spectroscopy, circular dichroism and MALDI-TOF. Results revealed that pigment-pigment interactions in light harvesting complexes are disrupted and the acceptor side (ferredoxin docking side) is damaged under high salt conditions.
ContributorsThangaraj, Balakumar (Author) / Fromme, Petra (Thesis advisor) / Shock, Everett (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2010
148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168752-Thumbnail Image.png
Description
The work in this dissertation progressed the research of structural discovery for two targets critical in the fight of infectious disease. Francisella lipoprotein 3 (Flpp3) is a virulent determinant of tularemia and was the first protein of study. The proteins soluble domain was studied using a hybrid modeling theory that

The work in this dissertation progressed the research of structural discovery for two targets critical in the fight of infectious disease. Francisella lipoprotein 3 (Flpp3) is a virulent determinant of tularemia and was the first protein of study. The proteins soluble domain was studied using a hybrid modeling theory that used small angle X-ray scattering (SAXS) in combination with computation analysis to generate a SAXS-refined structure. The SAXS-refined structure closely resembled the NMR structure (PDB: 2MU4) which contains a hydrophobic cavity inside the protein that could be used for drug discovery purposes. The full-length domain of Flpp3 purified from the outer membrane of E. coli was also studied with a combination of biophysical characterization methods. Mass spectrometry and western blot analysis confirmed Flpp3 being translocated to the outer membrane, while SDS-PAGE confirmed the purity of Flpp3 in the monomeric form after size exclusion chromatography. Using Circular Dichroism (CD) the monomeric form of Flpp3 was shown to be almost fully refolded into having a primarily β-stranded secondary structure. This information advances the progress of both tularemia research and outer membrane protein research as no natively folded outer membrane protein structures have been solved for F. tularensis.The second protein worked on in this dissertation is the nonstructural protein 15 from SARS-CoV-2, also called NendoU. Nsp15 is an endoribonuclease associated with aiding the virus responsible for the current COVID-19 pandemic in evasion of the immune system. An inactive mutant of Nsp15 was studied with both negative stain electron microscopy and cryogenic electron microscopy (Cryo-EM) in the presence of RNA or without RNA present. The initial findings of negative stain electron microscopy of Nsp15 with and without RNA showed a difference in appearance. Negative stain analysis of Nsp15 is in the presence of a 5nt RNA sequence in low salt conditions shows a conformational change when compared to Nsp15 without RNA present. As well the presence of RNA appeared to shift the electron density in Cryo-EM studies of Nsp15. This work advances the research in how Nsp15 may bind and cleave RNA and aid in the evasion of the host cell immune system.
ContributorsGoode, Matthew (Author) / Fromme, Petra (Thesis advisor) / Guo, Jia (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2022
168754-Thumbnail Image.png
Description
Infectious diseases are the third leading cause of death in the United States and the second leading cause of death in the world. This work aims to advance structural studies of vital proteins involved in the infection process of both a bacterial and a viral infectious disease in hopes of

Infectious diseases are the third leading cause of death in the United States and the second leading cause of death in the world. This work aims to advance structural studies of vital proteins involved in the infection process of both a bacterial and a viral infectious disease in hopes of reducing infection, and consequently, fatality rates. The first protein of interest is OspA, a major outer surface protein in Borrelia burgdorferi – the causative bacterium of Lyme disease. Previous functional studies of OspA allude to both a role in colonization of B. burgdorferi in the tick vector and in evasion of the human immune system. This work describes the first ever structural studies of OspA as it is seen by the immune system: in the outer membrane. OspA was expressed in and purified from the outer membrane of Escherichia coli prior to characterization via circular dichroism (CD), native polyacrylamide gel electrophoresis, and electron microscopy. Characterization studies of OspA provide the first evidence of multimeric formation of OspA when translocated to the outer membrane, which presents a new perspective from which to build upon for the design of vaccinations against Lyme disease. The second protein of interest is nonstructural protein 15 (Nsp15), a protein responsible for facilitating immune system evasion of SARS-CoV-2 – the virus responsible for the COVID-19 pandemic. Nsp15 functions to enzymatically cleave negative sense viral RNA to avoid recognition by the human immune system. The work described in this dissertation is dedicated to the electron microscopy work utilized to reveal structural information on an inactive variant of Nsp15 bound to RNA sequences. Negative stain electron microscopy was used to verify Nsp15 structural integrity, as well as reveal a low-resolution image of structural deviation when RNA is bound to Nsp15. Cryo-electron microscopy was performed to solve structural density of Nsp15 without RNA to a resolution of 3.11 Å and Nsp15 bound to 5-nucleotides of RNA to a resolution of 3.99 Å. With further refinement, this structure will show the first structural data of Nsp15 bound to a visible RNA sequence, revealing information on the binding and enzymatic activity of Nsp15.
ContributorsKaschner, Emily (Author) / Fromme, Petra (Thesis advisor) / Hansen, Debra T (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2022
Description

Oceanic life is facing the deleterious aftermath of coral bleaching. To reverse the damages introduced by anthropological means, it is imperative to study fundamental properties of corals. One way to do so is to understand the metabolic pathways and protein functions of corals that contribute to the resilience of coral

Oceanic life is facing the deleterious aftermath of coral bleaching. To reverse the damages introduced by anthropological means, it is imperative to study fundamental properties of corals. One way to do so is to understand the metabolic pathways and protein functions of corals that contribute to the resilience of coral reefs. Although genomic sequencing and structural modeling has yielded significant insights for well-studied organisms, more investigation must be conducted for corals. Better yet, quantifiable experiments are far more crucial to the understanding of corals. The objective is to clone, purify, and assess coral proteins from the cauliflower coral species known as Pocillopora damicornis. Presented here is the pipeline for how 3-D structural modeling can help support the experimental data from studying soluble proteins in corals. Using a multi-step selection approach, 25 coral genes were selected and retrieved from the genomic database. Using Escherischia coli and Homo sapiens homologues for sequence alignment, functional properties of each protein were predicted to aid in the production of structural models. Using D-SCRIPT, potential pairwise protein-protein interactions (PPI) were predicted amongst these 25 proteins, and further studied for identifying putative interfaces using the ClusPro server. 10 binding pockets were inferred for each pair of proteins. Standard cloning strategies were applied to express 4 coral proteins for purification and functional assays. 2 of the 4 proteins had visible bands on the Coomassie stained gel and were able to advance to the purification step. Both proteins exhibited a faint band at the expected migration distance for at least one of the elutions. Finally, PPI was carried out by mixing protein samples and running in a native gel, resulting in one potential pair of PPI.

ContributorsHuang, Joe (Author) / Klein-Seetharaman, Judith (Thesis director) / Fromme, Petra (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
171795-Thumbnail Image.png
Description
Macromolecular structural biology advances the understanding of protein function through the structure-function relationship for applications to scientific challenges like energy and medicine. The proteins described in these studies have applications to medicine as targets for therapeutic drug design. By understanding the mechanisms and dynamics of these proteins, therapeutics can be

Macromolecular structural biology advances the understanding of protein function through the structure-function relationship for applications to scientific challenges like energy and medicine. The proteins described in these studies have applications to medicine as targets for therapeutic drug design. By understanding the mechanisms and dynamics of these proteins, therapeutics can be designed and optimized based on their unique structural characteristics. This can create new, focused therapeutics for the treatment of diseases with increased specificity — which translates to greater efficacy and fewer off-target effects. Many of the structures generated for this purpose are “static” in nature, meaning the protein is observed like a still-frame photograph; however, the use of time-resolved techniques is allowing for greater understanding of the dynamic and flexible nature of proteins. This work advances understanding the dynamics of the medically relevant proteins NendoU and Taspase1 using serial crystallography to establish conditions for time-resolved, mix-and-inject crystallographic studies.
ContributorsJernigan, Rebecca Jeanne (Author) / Fromme, Petra (Thesis advisor) / Hansen, Debra (Thesis advisor) / Chiu, Po-Lin (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2022
171891-Thumbnail Image.png
Description
First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons

First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons to be transferred energetically uphill, eventually to be stored as a high energy chemical bond. These protein complexes are highly conserved throughout different photosynthetic lineages and understanding the variations across species is vital for a complete understanding of how photosynthetic organisms can adapt to vastly different environmental conditions. Most knowledge about photosynthesis comes from only a handful of model organisms grown under laboratory conditions. Studying model organisms has facilitated major breakthroughs in understanding photosynthesis, however, due to the vast global diversity of environments where photosynthetic organisms are found, certain aspects of this process may be overlooked or missed by focusing on a select group of organisms optimized for studying in laboratory conditions. This dissertation describes the isolation of a new extremophile cyanobacteria, Cyanobacterium aponinum 0216, from the Arizona Sonoran Desert and its innate ability to grow in light intensities that exceed other model organisms. A structure guided approach was taken to investigate how the structure of photosystem I can influence the spectroscopic properties of chlorophylls, with a particular focus on long wavelength chlorophylls, in an attempt to uncover if photosystem I is responsible for high light tolerance in Cyanobacterium aponinum 0216. To accomplish this, the structure of photosystem I was solved by cryogenic electron microscopy to 2.7-anstrom resolution. By comparing the structure and protein sequences of Cyanobacterium aponinum to other model organisms, specific variations were identified and explored by constructing chimeric PSIs in the model organism Synechocystis sp. PCC 6803 to determine the effects that each specific variation causes. The results of this dissertation describe how the protein structure and composition affect the spectroscopic properties of chlorophyll molecules and the oligomeric structure of photosystem I, possibly providing an evolutionary advantage in the high light conditions observed in the Arizona Sonoran Desert.
ContributorsDobson, Zachary (Author) / Fromme, Petra (Thesis advisor) / Mazor, Yuval (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2022
157795-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for

Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for structure determination. However, analysis of SFX data is challenging since each snapshot is processed individually.

Many photosystem II (PSII) dataset have been collected at XFELs, several of which are time-resolved (containing both dark and laser illuminated frames). Comparison of light and dark datasets requires understanding systematic errors that can be introduced during data analysis. This dissertation describes data analysis of PSII datasets with a focus on the effect of parameters on later results. The influence of the subset of data used in the analysis is also examined and several criteria are screened for their utility in creating better subsets of data. Subsets are compared with Bragg data analysis and continuous diffuse scattering data analysis.

A new tool, DatView aids in the creation of subsets and visualization of statistics. DatView was developed to improve the loading speed to visualize statistics of large SFX datasets and simplify the creation of subsets based on the statistics. It combines the functionality of several existing visualization tools into a single interface, improving the exploratory power of the tool. In addition, it has comparison features that allow a pattern-by-pattern analysis of the effect of processing parameters. \emph{DatView} improves the efficiency of SFX data analysis by reducing loading time and providing novel visualization tools.
ContributorsStander, Natasha (Author) / Fromme, Petra (Thesis advisor) / Zatsepin, Nadia (Thesis advisor) / Kirian, Richard (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2019
158683-Thumbnail Image.png
Description
This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified

This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified protein was dimeric as shown by native polyacrylamide gel electrophoresis and small angle X-ray scattering (SAXS) analysis, with an abundance of β-strands based on circular dichroism spectroscopy. SAXS data supports the presence of a pore. Furthermore, protein crystals of membrane translocated FopA were obtained with preliminary X-ray diffraction data. The identified crystallization condition provides the means towards FopA structure determination; a valuable tool for structure-based design of anti-tularemia therapeutics.

Next, the nonstructural protein μNS of avian reoviruses was investigated using in vivo crystallization and serial femtosecond X-ray crystallography. Avian reoviruses infect poultry flocks causing significant economic losses. μNS is crucial in viral factory formation facilitating viral replication within host cells. Thus, structure-based targeting of μNS has the potential to disrupt intracellular viral propagation. Towards this goal, crystals of EGFP-tagged μNS (EGFP-μNS (448-605)) were produced in insect cells. The crystals diffracted to 4.5 Å at X-ray free electron lasers using viscous jets as crystal delivery methods and initial electron density maps were obtained. The resolution reported here is the highest described to date for μNS, which lays the foundation towards its structure determination.

Finally, structural, and functional studies of human Threonine aspartase 1 (Taspase1) were performed. Taspase1 is overexpressed in many liquid and solid malignancies. In the present study, using strategic circular permutations and X-ray crystallography, structure of catalytically active Taspase1 was resolved. The structure reveals the conformation of a 50 residues long fragment preceding the active side residue (Thr234), which has not been structurally characterized previously. This fragment adopted a straight helical conformation in contrast to previous predictions. Functional studies revealed that the long helix is essential for proteolytic activity in addition to the active site nucleophilic residue (Thr234) mediated proteolysis. Together, these findings enable a new approach for designing anti-cancer drugs by targeting the long helical fragment.
ContributorsNagaratnam, Nirupa (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Thesis advisor) / Van Horn, Wade (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2020