Matching Items (32)
Filtering by

Clear all filters

150243-Thumbnail Image.png
Description
ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a

ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a variety of DNA nanostructures, which can be organized into both discrete and periodic structures. This dissertation focuses on studying the dynamic behavior of DNA nanostructure recognition processes. The thermodynamics and kinetics of nanostructure binding are evaluated, with the intention of improving our ability to understand and control their assembly. Presented here are a series of studies toward this goal. First, multi-helical DNA nanostructures were used to investigate how the valency and arrangement of the connections between DNA nanostructures affect super-structure formation. The study revealed that both the number and the relative position of connections play a significant role in the stability of the final assembly. Next, several DNA nanostructures were designed to gain insight into how small changes to the nanostructure scaffolds, intended to vary their conformational flexibility, would affect their association equilibrium. This approach yielded quantitative information about the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. Finally, a multi-helical DNA nanostructure was used as a model `chip' for the detection of a single stranded DNA target. The results revealed that the rate constant of hybridization is strongly dominated by a rate-limiting nucleation step.
ContributorsNangreave, Jeanette (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian J.-L. (Committee member) / Seo, Dong Kyun (Committee member) / Arizona State University (Publisher)
Created2011
151758-Thumbnail Image.png
Description
The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology

The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology and even with complex curvatures. In addition, after construction of enough amounts DNA structure candidates, DNA structure template, with excellent spatial addressability, had been used to direct the assembly of different nanomaterials, including nanoparticles and proteins, to produce different functional nanomaterials. However there are still many challenges to fabricate functional DNA nanostructures. The first difficulty is that the present finite sized template dimension is still very small, usually smaller than 100nm, which will limit the application for large amount of nanomaterials assembly or large sized nanomaterials assembly. Here we tried to solve this problem through developing a new method, superorigami, to construct finite sized DNA structure with much larger dimension, which can be as large as 500nm. The second problem will be explored the ability of DNA structure to assemble inorganic nanomaterials for novel photonic or electronic properties. Here we tried to utilize DNA Origami method to assemble AuNPs with controlled 3D spacial position for possible chiral photonic complex. We also tried to assemble SWNT with discrete length for possible field effect transistor device. In addition, we tried to mimic in vivo compartment with DNA structure to study internalized enzyme behavior. From our results, constructed DNA cage origami can protect encapsulated enzyme from degradation, and internalized enzyme activity can be boosted for up to 10 folds. In summary, DNA structure can serve as an ideal template for construction of functional nanomaterials with lots of possibilities to be explored.
ContributorsZhao, Zhao (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2013
151620-Thumbnail Image.png
Description
DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles

DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate inter-molecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of other biomolecular networks to translate biochemical pathways to non-cellular environments. Presented here are a series of studies toward this application. First, a novel strategy utilized DNA origami as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multi-component systems from biological scaffolds using the power of rationally engineered DNA nanostructures. Next, discrete glucose oxidase (GOx)/ horseradish peroxidase (HRP) enzyme pairs were organized on DNA origami tiles with controlled interenzyme spacing and position. This study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Finally, a tweezer-like DNA nanodevice was designed and constructed to actuate the activity of an enzyme/cofactor pair. Using this approach, several cycles of externally controlled enzyme inhibition and activation were successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.
ContributorsLiu, Minghui (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2013
151872-Thumbnail Image.png
Description
Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this

Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this line, my Ph.D. dissertation focuses on the in vitro selection of two important biomolecules, deoxynucleotide acid (DNA) and protein with binding properties. Chapter two focuses on in vitro selection of DNA. Aptamers are single-stranded nucleic acids that generated from a random pool and fold into stable three-dimensional structures with ligand binding sites that are complementary in shape and charge to a desired target. While aptamers have been selected to bind a wide range of targets, it is generally thought that these molecules are incapable of discriminating strongly alkaline proteins due to the attractive forces that govern oppositely charged polymers. By employing negative selection step to eliminate aptamers that bind with off-target through charge unselectively, an aptamer that binds with histone H4 protein with high specificity (>100 fold)was generated. Chapter four focuses on another functional molecule: protein. It is long believed that complex molecules with different function originated from simple progenitor proteins, but very little is known about this process. By employing a previously selected protein that binds and catalyzes ATP, which is the first and only protein that was evolved completely from random pool and has a unique α/β-fold protein scaffold, I fused random library to the C-terminus of this protein and evolved a multi-domain protein with decent properties. Also, in chapter 3, a unique bivalent molecule was generated by conjugating peptides that bind different sites on the protein with nucleic acids. By using the ligand interactions by nucleotide conjugates technique, off-the shelf peptide was transferred into high affinity protein capture reagents that mimic the recognition properties of natural antibodies. The designer synthetic antibody amplifies the binding affinity of the individual peptides by ∼1000-fold to bind Grb2 with a Kd of 2 nM, and functions with high selectivity in conventional pull-down assays from HeLa cell lysates.
ContributorsJiang, Bing (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2013
151401-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable

Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are a series of studies toward this goal. First, a novel and robust strategy of DNA functionalized silver nanoparticles (AgNPs) was developed and DNA functionalized AgNPs were employed for the organization of discrete well-defined dimeric and trimeric structures using a DNA triangular origami scaffold. Assembly of 1:1 silver nanoparticle and gold nanoparticle heterodimer has also been demonstrated using the same approach. Next, the triangular origami structures were used to co-assemble gold nanoparticles (AuNPs) and fluorophores to study the distance dependent and nanogap dependencies of the photonic interactions between them. These interactions were found to be consistent with the full electrodynamic simulations. Further, a gold nanorod (AuNR), an anisotropic nanoparticle was assembled into well-defined dimeric structures with predefined inter-rod angles. These dimeric structures exhibited unique optical properties compared to single AuNR that was consistent with the theoretical calculations. Fabrication of otherwise difficult to achieve 1:1 AuNP- AuNR hetero dimer, where the AuNP can be selectively placed at the end-on or side-on positions of anisotropic AuNR has also been shown. Finally, a click chemistry based approach was developed to organize sugar modified DNA on a particular arm of a DNA origami triangle and used them for site-selective immobilization of small AgNPs.
ContributorsPal, Suchetan (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
135905-Thumbnail Image.png
Description
This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study

This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study was analyzed through observing concentrations of biomolecules present within samples of blood plasma and nasal lavages. These included vitamin C, sICAM-1 expression, and histamine. The following P-values calculated from the data collected from this study. The plasma vitamin C screening was p=0.3, and after 18 days of supplementation, p=0.03. For Nasal ICAM p=0.5 at Day 0, p=0.4 at Day 4, and p=0.9 at Day 18. For the Histamine samples p=0.9 at Day 0 and p=0.9 at Day 18. The following P-values calculated from the data collected from both studies. The plasma vitamin C screening was p=0.8, and after 18 days of supplementation, p=0.03. The change of vitamin C at the end of this study and the combined data both had a P-value that was calculated to be lower than 0.05, which meant that this change was significant because it was due to the intervention and not chance. For Nasal ICAM samples p=0.7 at Day 0, p=0.7 at Day 4, and p=1 at Day 18. For the Histamine p=0.7 at Day 0 and p=0.9 at Day 18. This study carries various implications although the study data was unable to show much significance. This was the second study to test this, and as more research is done, and the sample size grows, one will be able to observe whether this really is the mechanism through which vitamin C plays a role in immunological functions.
ContributorsKapadia, Chirag Vinay (Author) / Johnston, Carol (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
137273-Thumbnail Image.png
Description
Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within the Cdc25 domain of the protein, the Dbl homology domain is vital for efficient auto-AMPylation activity, and the C-terminal proline-rich domain exhibits a complex regulatory function. The proline-rich domain alone also appears to be capable of catalyzing a separate, unidentified covalent self-modification using a fluorescent ATP analogue. Finally, SOS1 was shown to be capable of catalyzing the AMPylation of two endogenous human protein substrates: a ubiquitous, unidentified protein of ~49kDa and another breast-cancer specific, unidentified protein of ~28kDa.
ContributorsOber-Reynolds, Benjamin John (Author) / LaBaer, Joshua (Thesis director) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
132463-Thumbnail Image.png
Description
The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher

The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher sulfate concentration where the yeast grows quickly, with or without the sulfate transporters. The lowest sulfate concentration where the yeast without the sulfate transporters is able to grow was determined to be 2-4 mM, however, this range can likely be refined by more quantitative analytical methods. At a sulfate concentration of 20 mM sulfate or higher, the yeast is able to grow quickly without high-affinity sulfate transporters. The next step in the project is to re-introduce the Sulp1 and Sulp2 genes into the yeast, so that growth in low and high sulfate conditions can be compared with and without the Sulp1 and Sulp2 proteins. The long-term goals of the project are to bring experience with yeast to Dr. Nannenga’s structural discovery lab, to determine if yeast sulfate transporters respond in the same way to drug candidates as human sulfate transporters, and to determine the structure of the proteins using cryo-electron microscopy.
ContributorsCall, Nicolas I (Author) / Nannenga, Brent (Thesis director) / Wang, Xuan (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171581-Thumbnail Image.png
Description
Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for

Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for textile, biomedical, drug delivery, among many others. Amorphous materials are metastable, with kinetic profiles of phase transitions depending on relaxation dynamics, thermal history, plus factors such as temperature, pressure, and humidity. Understanding molecular structure and phase transitions of amorphous states of small molecules and biopolymers is broadly important for realizing their applications. The structure of liquid and glassy states of the drugs carbamazepine (CBZ) and indomethacin (IMC) were studied with solid-state nuclear magnetic resonance (ssNMR) spectroscopy, high energy X-ray diffraction, Fourier Infrared Transform Spectroscopy (FTIR), differential scanning calorimetry (DSC), and Empirical Potential Structure Refinement (EPSR). Both drugs have multiple crystalline polymorphs with slow dissolution kinetics, necessitating stable glassy or polymer dispersed formulations. More hydrogen bonds per CBZ molecule and a larger distribution of oligomeric states in the glass versus the liquid than expected. The chlorobenzyl ring of crystalline and glassy IMC measured with ssNMR were surprisingly found to have similar mobility. Crucially, humidity strongly affects glass structure, highlighting the importance of combining modeling techniques like EPSR with careful sample preparation for proper interpretation. Highly basic protic ionic liquids with low ∆pKa were synthesized with metathesis rather than proton transfer and characterized using NMR and dielectric spectroscopy. Finally, the protein secondary structure of spider egg sac silk was studied using ssNMR, FTIR, and scanning electron microscopy. Tubuliform silk found in spider egg sacs has extensive β-sheet domains which form nanocrystallites within an amorphous matrix. Structural predictions and spectroscopic measurements of tubuliform silk solution are mostly α-helical, with the mechanism of structural rearrangement to the β-sheet rich fiber unknown. The movement of spiders during egg silk spinning make in situ experiments difficult practically. This work is the first observation that tubuliform silk of Argiope aurantia after liquid crystalline spinning exits the spinneret as a predominantly (~70%) β-sheet fiber.
ContributorsEdwards, Angela Diane (Author) / Yarger, Jeffery L (Thesis advisor) / Liu, Yan (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2022