Matching Items (16)
Filtering by

Clear all filters

150243-Thumbnail Image.png
Description
ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a

ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a variety of DNA nanostructures, which can be organized into both discrete and periodic structures. This dissertation focuses on studying the dynamic behavior of DNA nanostructure recognition processes. The thermodynamics and kinetics of nanostructure binding are evaluated, with the intention of improving our ability to understand and control their assembly. Presented here are a series of studies toward this goal. First, multi-helical DNA nanostructures were used to investigate how the valency and arrangement of the connections between DNA nanostructures affect super-structure formation. The study revealed that both the number and the relative position of connections play a significant role in the stability of the final assembly. Next, several DNA nanostructures were designed to gain insight into how small changes to the nanostructure scaffolds, intended to vary their conformational flexibility, would affect their association equilibrium. This approach yielded quantitative information about the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. Finally, a multi-helical DNA nanostructure was used as a model `chip' for the detection of a single stranded DNA target. The results revealed that the rate constant of hybridization is strongly dominated by a rate-limiting nucleation step.
ContributorsNangreave, Jeanette (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian J.-L. (Committee member) / Seo, Dong Kyun (Committee member) / Arizona State University (Publisher)
Created2011
151758-Thumbnail Image.png
Description
The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology

The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology and even with complex curvatures. In addition, after construction of enough amounts DNA structure candidates, DNA structure template, with excellent spatial addressability, had been used to direct the assembly of different nanomaterials, including nanoparticles and proteins, to produce different functional nanomaterials. However there are still many challenges to fabricate functional DNA nanostructures. The first difficulty is that the present finite sized template dimension is still very small, usually smaller than 100nm, which will limit the application for large amount of nanomaterials assembly or large sized nanomaterials assembly. Here we tried to solve this problem through developing a new method, superorigami, to construct finite sized DNA structure with much larger dimension, which can be as large as 500nm. The second problem will be explored the ability of DNA structure to assemble inorganic nanomaterials for novel photonic or electronic properties. Here we tried to utilize DNA Origami method to assemble AuNPs with controlled 3D spacial position for possible chiral photonic complex. We also tried to assemble SWNT with discrete length for possible field effect transistor device. In addition, we tried to mimic in vivo compartment with DNA structure to study internalized enzyme behavior. From our results, constructed DNA cage origami can protect encapsulated enzyme from degradation, and internalized enzyme activity can be boosted for up to 10 folds. In summary, DNA structure can serve as an ideal template for construction of functional nanomaterials with lots of possibilities to be explored.
ContributorsZhao, Zhao (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2013
151620-Thumbnail Image.png
Description
DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles

DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate inter-molecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of other biomolecular networks to translate biochemical pathways to non-cellular environments. Presented here are a series of studies toward this application. First, a novel strategy utilized DNA origami as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multi-component systems from biological scaffolds using the power of rationally engineered DNA nanostructures. Next, discrete glucose oxidase (GOx)/ horseradish peroxidase (HRP) enzyme pairs were organized on DNA origami tiles with controlled interenzyme spacing and position. This study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Finally, a tweezer-like DNA nanodevice was designed and constructed to actuate the activity of an enzyme/cofactor pair. Using this approach, several cycles of externally controlled enzyme inhibition and activation were successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.
ContributorsLiu, Minghui (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2013
151872-Thumbnail Image.png
Description
Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this

Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this line, my Ph.D. dissertation focuses on the in vitro selection of two important biomolecules, deoxynucleotide acid (DNA) and protein with binding properties. Chapter two focuses on in vitro selection of DNA. Aptamers are single-stranded nucleic acids that generated from a random pool and fold into stable three-dimensional structures with ligand binding sites that are complementary in shape and charge to a desired target. While aptamers have been selected to bind a wide range of targets, it is generally thought that these molecules are incapable of discriminating strongly alkaline proteins due to the attractive forces that govern oppositely charged polymers. By employing negative selection step to eliminate aptamers that bind with off-target through charge unselectively, an aptamer that binds with histone H4 protein with high specificity (>100 fold)was generated. Chapter four focuses on another functional molecule: protein. It is long believed that complex molecules with different function originated from simple progenitor proteins, but very little is known about this process. By employing a previously selected protein that binds and catalyzes ATP, which is the first and only protein that was evolved completely from random pool and has a unique α/β-fold protein scaffold, I fused random library to the C-terminus of this protein and evolved a multi-domain protein with decent properties. Also, in chapter 3, a unique bivalent molecule was generated by conjugating peptides that bind different sites on the protein with nucleic acids. By using the ligand interactions by nucleotide conjugates technique, off-the shelf peptide was transferred into high affinity protein capture reagents that mimic the recognition properties of natural antibodies. The designer synthetic antibody amplifies the binding affinity of the individual peptides by ∼1000-fold to bind Grb2 with a Kd of 2 nM, and functions with high selectivity in conventional pull-down assays from HeLa cell lysates.
ContributorsJiang, Bing (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2013
151401-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable

Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are a series of studies toward this goal. First, a novel and robust strategy of DNA functionalized silver nanoparticles (AgNPs) was developed and DNA functionalized AgNPs were employed for the organization of discrete well-defined dimeric and trimeric structures using a DNA triangular origami scaffold. Assembly of 1:1 silver nanoparticle and gold nanoparticle heterodimer has also been demonstrated using the same approach. Next, the triangular origami structures were used to co-assemble gold nanoparticles (AuNPs) and fluorophores to study the distance dependent and nanogap dependencies of the photonic interactions between them. These interactions were found to be consistent with the full electrodynamic simulations. Further, a gold nanorod (AuNR), an anisotropic nanoparticle was assembled into well-defined dimeric structures with predefined inter-rod angles. These dimeric structures exhibited unique optical properties compared to single AuNR that was consistent with the theoretical calculations. Fabrication of otherwise difficult to achieve 1:1 AuNP- AuNR hetero dimer, where the AuNP can be selectively placed at the end-on or side-on positions of anisotropic AuNR has also been shown. Finally, a click chemistry based approach was developed to organize sugar modified DNA on a particular arm of a DNA origami triangle and used them for site-selective immobilization of small AgNPs.
ContributorsPal, Suchetan (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
132463-Thumbnail Image.png
Description
The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher

The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher sulfate concentration where the yeast grows quickly, with or without the sulfate transporters. The lowest sulfate concentration where the yeast without the sulfate transporters is able to grow was determined to be 2-4 mM, however, this range can likely be refined by more quantitative analytical methods. At a sulfate concentration of 20 mM sulfate or higher, the yeast is able to grow quickly without high-affinity sulfate transporters. The next step in the project is to re-introduce the Sulp1 and Sulp2 genes into the yeast, so that growth in low and high sulfate conditions can be compared with and without the Sulp1 and Sulp2 proteins. The long-term goals of the project are to bring experience with yeast to Dr. Nannenga’s structural discovery lab, to determine if yeast sulfate transporters respond in the same way to drug candidates as human sulfate transporters, and to determine the structure of the proteins using cryo-electron microscopy.
ContributorsCall, Nicolas I (Author) / Nannenga, Brent (Thesis director) / Wang, Xuan (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171581-Thumbnail Image.png
Description
Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for

Molecular structures and dynamics in amorphous materials present unique experimental challenges compared with the characterization of crystalline solids. Liquids and glassy solids have many applications in industry such as ionic liquids for fuel cells or biomolecule stabilizing agents, enhancing pharmaceuticals dissolution rates, and modified high performance biopolymers like silk for textile, biomedical, drug delivery, among many others. Amorphous materials are metastable, with kinetic profiles of phase transitions depending on relaxation dynamics, thermal history, plus factors such as temperature, pressure, and humidity. Understanding molecular structure and phase transitions of amorphous states of small molecules and biopolymers is broadly important for realizing their applications. The structure of liquid and glassy states of the drugs carbamazepine (CBZ) and indomethacin (IMC) were studied with solid-state nuclear magnetic resonance (ssNMR) spectroscopy, high energy X-ray diffraction, Fourier Infrared Transform Spectroscopy (FTIR), differential scanning calorimetry (DSC), and Empirical Potential Structure Refinement (EPSR). Both drugs have multiple crystalline polymorphs with slow dissolution kinetics, necessitating stable glassy or polymer dispersed formulations. More hydrogen bonds per CBZ molecule and a larger distribution of oligomeric states in the glass versus the liquid than expected. The chlorobenzyl ring of crystalline and glassy IMC measured with ssNMR were surprisingly found to have similar mobility. Crucially, humidity strongly affects glass structure, highlighting the importance of combining modeling techniques like EPSR with careful sample preparation for proper interpretation. Highly basic protic ionic liquids with low ∆pKa were synthesized with metathesis rather than proton transfer and characterized using NMR and dielectric spectroscopy. Finally, the protein secondary structure of spider egg sac silk was studied using ssNMR, FTIR, and scanning electron microscopy. Tubuliform silk found in spider egg sacs has extensive β-sheet domains which form nanocrystallites within an amorphous matrix. Structural predictions and spectroscopic measurements of tubuliform silk solution are mostly α-helical, with the mechanism of structural rearrangement to the β-sheet rich fiber unknown. The movement of spiders during egg silk spinning make in situ experiments difficult practically. This work is the first observation that tubuliform silk of Argiope aurantia after liquid crystalline spinning exits the spinneret as a predominantly (~70%) β-sheet fiber.
ContributorsEdwards, Angela Diane (Author) / Yarger, Jeffery L (Thesis advisor) / Liu, Yan (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2022
157621-Thumbnail Image.png
Description
The fundamental building blocks for constructing complex synthetic gene networks are effective biological parts with wide dynamic range, low crosstalk, and modularity. RNA-based components are promising sources of such parts since they can provide regulation at the level of transcription and translation and their predictable base pairing properties enable large

The fundamental building blocks for constructing complex synthetic gene networks are effective biological parts with wide dynamic range, low crosstalk, and modularity. RNA-based components are promising sources of such parts since they can provide regulation at the level of transcription and translation and their predictable base pairing properties enable large libraries to be generated through in silico design. This dissertation studies two different approaches for initiating interactions between RNA molecules to implement RNA-based components that achieve translational regulation. First, single-stranded domains known as toeholds were employed for detection of the highly prevalent foodborne pathogen norovirus. Toehold switch riboregulators activated by trigger RNAs from the norovirus RNA genome are designed, validated, and coupled with paper-based cell-free transcription-translation systems. Integration of paper-based reactions with synbody enrichment and isothermal RNA amplification enables as few as 160 copies/mL of norovirus from clinical samples to be detected in reactions that do not require sophisticated equipment and can be read directly by eye. Second, a new type of riboregulator that initiates RNA-RNA interactions through the loop portions of RNA stem-loop structures was developed. These loop-initiated RNA activators (LIRAs) provide multiple advantages compared to toehold-based riboregulators, exhibiting ultralow signal leakage in vivo, lacking any trigger RNA sequence constraints, and appending no additional residues to the output protein. Harnessing LIRAs as modular parts, logic gates that exploit loop-mediated control of mRNA folding state to implement AND and OR operations with up to three sequence-independent input RNAs were constructed. LIRA circuits can also be ported to paper-based cell-free reactions to implement portable systems with molecular computing and sensing capabilities. LIRAs can detect RNAs from a variety of different pathogens, such as HIV, Zika, dengue, yellow fever, and norovirus, and after coupling to isothermal amplification reactions, provide visible test results down to concentrations of 20 aM (12 RNA copies/µL). And the logic functionality of LIRA circuits can be used to specifically identify different HIV strains and influenza A subtypes. These findings demonstrate that toehold- and loop-mediated RNA-RNA interactions are both powerful strategies for implementing RNA-based computing systems for intracellular and diagnostic applications.
ContributorsMA, DUO (Author) / Green, Alexander (Thesis advisor) / Mangone, Marco (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2019
154613-Thumbnail Image.png
Description
Nature is a master at organizing biomolecules in all intracellular processes, and researchers have conducted extensive research to understand the way enzymes interact with each other through spatial and orientation positioning, substrate channeling, compartmentalization, and more.

DNA nanostructures of high programmability and complexity provide excellent scaffolds to arrange multiple molecular/macromolecular

Nature is a master at organizing biomolecules in all intracellular processes, and researchers have conducted extensive research to understand the way enzymes interact with each other through spatial and orientation positioning, substrate channeling, compartmentalization, and more.

DNA nanostructures of high programmability and complexity provide excellent scaffolds to arrange multiple molecular/macromolecular components at nanometer scale to construct interactive biomolecular complexes and networks. Due to the sequence specificity at different positions of the DNA origami nanostructures, spatially addressable molecular pegboard with a resolution of several nm (less than 10 nm) can be achieved. So far, DNA nanostructures can be used to build nanodevices ranging from in vitro small molecule biosensing to sophisticated in vivo therapeutic drug delivery systems and multi-enzyme networks.

This thesis focuses on how to use DNA nanostructures as programmable biomolecular scaffolds to arranges enzymatic systems. Presented here are a series of studies toward this goal. First, we survey approaches used to generate protein-DNA conjugates and the use of structural DNA nanotechnology to engineer rationally designed nanostructures. Second, novel strategies for positioning enzymes on DNA nanoscaffolds has been developed and optimized, including site-specific/ non site-specific protein-DNA conjugation, purification and characterization. Third, an artificial swinging arm enzyme-DNA complex has been developed to mimic substrate channeling process. Finally, we extended to build a artificial 2D multi-enzyme network.
ContributorsYang, Yuhe Renee (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2016
154412-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA) has emerged as an attractive building material for creating complex architectures at the nanometer scale that simultaneously affords versatility and modularity. Particularly, the programmability of DNA enables the assembly of basic building units into increasingly complex, arbitrary shapes or patterns. With the expanding complexity and functionality of

Deoxyribonucleic acid (DNA) has emerged as an attractive building material for creating complex architectures at the nanometer scale that simultaneously affords versatility and modularity. Particularly, the programmability of DNA enables the assembly of basic building units into increasingly complex, arbitrary shapes or patterns. With the expanding complexity and functionality of DNA toolboxes, a quantitative understanding of DNA self-assembly in terms of thermodynamics and kinetics, will provide researchers with more subtle design guidelines that facilitate more precise spatial and temporal control. This dissertation focuses on studying the physicochemical properties of DNA tile-based self-assembly process by recapitulating representative scenarios and intermediate states with unique assembly pathways.

First, DNA double-helical tiles with increasing flexibility were designed to investigate the dimerization kinetics. The higher dimerization rates of more rigid tiles result from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. Next, the thermodynamics and kinetics of single tile attachment to preformed “multitile” arrays were investigated to test the fundamental assumptions of tile assembly models. The results offer experimental evidences that double crossover tile attachment is determined by the electrostatic environment and the steric hindrance at the binding site. Finally, the assembly of double crossover tiles within a rhombic DNA origami frame was employed as the model system to investigate the competition between unseeded, facet and seeded nucleation. The results revealed that preference of nucleation types can be tuned by controlling the rate-limiting nucleation step.

The works presented in this dissertation will be helpful for refining the DNA tile assembly model for future designs and simulations. Moreover, The works presented here could also be helpful in understanding how individual molecules interact and more complex cooperative bindings in chemistry and biology. The future direction will focus on the characterization of tile assembly at single molecule level and the development of error-free tile assembly systems.
ContributorsJiang, Shuoxing (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Hayes, Mark (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2016