Matching Items (35)
Filtering by

Clear all filters

149763-Thumbnail Image.png
Description
In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment.
ContributorsBley, Christopher James (Author) / Chen, Julian (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
149963-Thumbnail Image.png
Description
Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group,

Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species.
ContributorsQi, Xiaodong (Author) / Chen, Julian (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2011
149796-Thumbnail Image.png
Description
Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short

Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short template sequence in TR. Unlike TERT, TR is extremely divergent in size, sequence and structure and has only been identified in three evolutionarily distant groups. The lack of knowledge on TR from important model organisms has been a roadblock for vigorous studies on telomerase regulation. To address this issue, a novel in vitro system combining deep-sequencing and bioinformatics search was developed to discover TR from new phylogenetic groups. The system has been validated by the successful identification of TR from echinoderm purple sea urchin Strongylocentrotus purpuratus. The sea urchin TR (spTR) is the first invertebrate TR that has been identified and can serve as a model for understanding how the vertebrate TR evolved with vertebrate-specific traits. By using phylogenetic comparative analysis, the secondary structure of spTR was determined. The spTR secondary structure reveals unique sea urchin specific structure elements as well as homologous structural features shared by TR from other organisms. This study enhanced the understanding of telomerase mechanism and the evolution of telomerase RNP. The system that was used to identity telomerase RNA can be employed for the discovery of other TR as well as the discovery of novel RNA from other RNP complex.
ContributorsLi, Yang (Author) / Chen, Julian Jl (Thesis advisor) / Yan, Hao (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150218-Thumbnail Image.png
Description
Natural products that target the DNA of cancer cells have been an important source of knowledge and understanding in the development of anticancer chemotherapeutic agents. Bleomycin (BLM) exemplifies this class of DNA damaging agent. The ability of BLM to chelate metal ions and effect oxidative damage of the deoxyribose sugar

Natural products that target the DNA of cancer cells have been an important source of knowledge and understanding in the development of anticancer chemotherapeutic agents. Bleomycin (BLM) exemplifies this class of DNA damaging agent. The ability of BLM to chelate metal ions and effect oxidative damage of the deoxyribose sugar moiety of DNA has been studied extensively for four decades. Here, the study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal free BLM. The ability of BLM to effect single-stranded was then extensively characterized on both the 3′ and 5′-arms of the hairpin DNAs. The strongly bound DNAs were found to be efficient substrates for Fe·BLM A5-mediated cleavage. Surprisingly, the most prevalent site of damage by BLM was found to be a 5′-AT-3′ dinucleotide sequence. This dinucleotide sequence and others generally not cleaved by BLM when examined using arbitrarily chosen DNA substrate were found in examining the library of ten hairpin DNAs. In total, 111 sites of DNA damage were found to be produced by exposure of the hairpin DNA library to Fe·BLM A5. Also, an assay was developed with which to test the propensity of the hairpin DNAs to undergo double stranded DNA damage. Adapting methods previously described by the Povirk laboratory, one hairpin was characterized using this method. The results were in accordance with those previously reported.
ContributorsSegerman, Zachary (Author) / Hecht, Sidney M. (Thesis advisor) / Levitus, Marcia (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150268-Thumbnail Image.png
Description
A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors

A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors of DNA and RNA. Threose nucleic acid (TNA) is capable of forming stable helical structures with complementary strands of itself and RNA. This provides a plausible mechanism for genetic information transfer between TNA and RNA. Therefore TNA has been proposed as a potential RNA progenitor. Using molecular evolution, functional sequences were isolated from a pool of random TNA molecules. This implicates a possible chemical framework capable of crosstalk between TNA and RNA. Further, this shows that heredity and evolution are not limited to the natural genetic system based on ribofuranosyl nucleic acids. Another alternative genetic system, glycerol nucleic acid (GNA) undergoes intrasystem pairing with superior thermalstability compared to that of DNA. Inspired by this property, I demonstrated a minimal nanostructure composed of both left- and right-handed mirro image GNA. This work suggested that GNA could be useful as promising orthogonal material in structural DNA nanotechnology.
ContributorsZhang, Su (Author) / Chaut, John C (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
151711-Thumbnail Image.png
Description
Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations found on enveloped viruses including Ebola, Influenza, and HIV. wt-CVN has micromolar binding to soluble Manα1-2Manα and also inhibits HIV entry at low nanomolar concentrations. CV-N's high affinity and specificity for Manα1-2Manα makes it an excellent lectin to study for its glycan-specific properties. The long-term aim of this project is to make a variety of mutant CV-Ns to specifically bind other glycan targets. Such a set of lectins may be used as screening reagents to identify biomarkers and other glycan motifs of interest. As proof of concept, a T7 phage display library was constructed using P51G-m4-CVN genes mutated at positions 41, 44, 52, 53, 56, 74, and 76 in binding Domain B. Five CV-N mutants were selected from the library and expressed in BL21(DE3) E. coli. Two of the mutants, SSDGLQQ-P51Gm4-CVN and AAGRLSK-P51Gm4-CVN, were sufficiently stable for characterization and were examined by CD, Tm, ELISA, and glycan array. Both proteins have CD minima at approximately 213 nm, indicating largely β-sheet structure, and have Tm values greater than 40°C. ELISA against gp120 and RNase B demonstrate both proteins' ability to bind high mannose glycans. To more specifically determine the binding specificity of each protein, AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN were sent to the Consortium for Functional Glycomics (CFG) for glycan array analysis. AAGRLSK-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN, have identical specificities for high mannose glycans containing terminal Manα1-2Manα. SSDGLQQ-P51Gm4-CVN binds to terminal GlcNAcα1-4Gal motifs and a subgroup of high mannose glycans bound by P51G-m4-CVN. SSDGLQQ-wt-CVN was produced to restore anti-HIV activity and has a high nanomolar EC50 value compared to wt-CVN's low nanomolar activity. Overall, these experiments show that CV-N Domain B can be mutated and retain specificity identical to wt-CVN or acquire new glycan specificities. This first generation information can be used to produce glycan-specific lectins for a variety of applications.
ContributorsRuben, Melissa (Author) / Ghirlanda, Giovanna (Thesis advisor) / Allen, James (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2013
151376-Thumbnail Image.png
Description
Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in the loss of lower body muscle function. SMA is the second leading genetic cause of death in infants and arises from the loss of the Survival of Motor Neuron (SMN) protein. SMN is produced by two genes, smn1 and

Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in the loss of lower body muscle function. SMA is the second leading genetic cause of death in infants and arises from the loss of the Survival of Motor Neuron (SMN) protein. SMN is produced by two genes, smn1 and smn2, that are identical with the exception of a C to T conversion in exon 7 of the smn2 gene. SMA patients lacking the smn1 gene, rely on smn2 for production of SMN. Due to an alternative splicing event, smn2 primarily encodes a non-functional SMN lacking exon 7 (SMN D7) as well as a low amount of functional full-length SMN (SMN WT). SMN WT is ubiquitously expressed in all cell types, and it remains unclear how low levels of SMN WT in motor neurons lead to motor neuron degradation and SMA. SMN and its associated proteins, Gemin2-8 and Unrip, make up a large dynamic complex that functions to assemble ribonucleoproteins. The aim of this project was to characterize the interactions of the core SMN-Gemin2 complex, and to identify differences between SMN WT and SMN D7. SMN and Gemin2 proteins were expressed, purified and characterized via size exclusion chromatography. A stable N-terminal deleted Gemin2 protein (N45-G2) was characterized. The SMN WT expression system was optimized resulting in a 10-fold increase of protein expression. Lastly, the oligomeric states of SMN and SMN bound to Gemin2 were determined. SMN WT formed a mixture of oligomeric states, while SMN D7 did not. Both SMN WT and D7 bound to Gemin2 with a one-to-one ratio forming a heterodimer and several higher-order oligomeric states. The SMN WT-Gemin2 complex favored high molecular weight oligomers whereas the SMN D7-Gemin2 complex formed low molecular weight oligomers. These results indicate that the SMA mutant protein, SMN D7, was still able to associate with Gemin2, but was not able to form higher-order oligomeric complexes. The observed multiple oligomerization states of SMN and SMN bound to Gemin2 may play a crucial role in regulating one or several functions of the SMN protein. The inability of SMN D7 to form higher-order oligomers may inhibit or alter those functions leading to the SMA disease phenotype.
ContributorsNiday, Tracy (Author) / Allen, James P. (Thesis advisor) / Wachter, Rebekka (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2012
150763-Thumbnail Image.png
Description
Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties

Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties of the proteins derived from GFP allows increased complexity of experiments and consequently, information content of the data acquired. The importance of arginine-96 in GFP has been widely discussed. It has been established as vital to the kinetics of chromophore maturation and to the overall fold of GFP before post-translational self-modification. Its value during chromophore maturation has been demonstrated by mutational studies and a hypothesis proposed for its catalytic function. A strategy is described herein to determine its pKa value via NMR to determine whether Arg96 possesses the chemical capacity to function as a general base during GFP chromophore biosynthesis. Förster resonance energy transfer (FRET) techniques commonly employ Enhanced Cyan Fluorescent Proteins (ECFPs) and their derivatives as donor fluorophores useful in real-time, live-cell imaging. These proteins have a tryptophan-derived chromophore that emits light in the blue region of the visible spectrum. Most ECFPs suffer from fluorescence instability, which, coupled with their low quantum yield, makes data analysis unreliable. The structural heterogeneity of these proteins also results in undesirable photophysical characteristics. Recently, mCerulean3, a ten amino acid mutant of ECFP, was introduced as an optimized FRET-donor protein (1). The amino acids changed include a mobile residue, Asp148, which has been mutated to a glycine in the new construct, and Thr65 near the chromophore has been mutated to a serine, the wild-type residue at this location. I have solved the x-ray crystal structure of mCerulean3 at low pH and find that the pH-dependent isomerization has been eliminated. The chromophore is in the trans-conformation previously observed in Cerulean at pH 8. The mutations that increase the quantum yield and improve fluorescence brightness result in a stable, bright donor fluorophore well-suited for use in quantitative microscopic imaging.
ContributorsWatkins, Jennifer L (Author) / Wachter, Rebekka M. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012
150978-Thumbnail Image.png
Description
Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and

Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and catalyze hydrogen oxidation in vivo. In contrast, the group 3 [NiFe]-hydrogenases are heteromultimeric, bifunctional enzymes that fulfill various cellular roles. In this dissertation, protein film electrochemistry (PFE) is used to characterize the catalytic properties of two group 3 [NiFe]-hydrogenases: HoxEFUYH from Synechocystsis sp. PCC 6803 and SHI from Pyrococcus furiosus. First, HoxEFUYH is shown to be biased towards hydrogen production. Upon exposure to oxygen, HoxEFUYH inactivates to two states, both of which can be reactivated on the timescale of seconds. Second, we show that PfSHI is the first example of an oxygen tolerant [NiFe]-hydrogenase that produces two inactive states upon exposure to oxygen. Both inactive states are analogous to those characterized for HoxEFUYH, but oxygen exposed PfSHI produces a greater fraction that reactivates at high potentials, enabling hydrogen oxidation in the presence of oxygen. Third, it is shown that removing the NAD(P)-reducing subunits from PfSHI leads to a decrease in bias towards hydrogen oxidation and renders the enzyme oxygen sensitive. Both traits are likely due to impaired intramolecular electron transfer. Mechanistic hypotheseses for these functional differences are considered.
ContributorsMcIntosh, Chelsea Lee (Author) / Jones, Anne K (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12