Matching Items (34)
Filtering by

Clear all filters

149796-Thumbnail Image.png
Description
Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short

Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short template sequence in TR. Unlike TERT, TR is extremely divergent in size, sequence and structure and has only been identified in three evolutionarily distant groups. The lack of knowledge on TR from important model organisms has been a roadblock for vigorous studies on telomerase regulation. To address this issue, a novel in vitro system combining deep-sequencing and bioinformatics search was developed to discover TR from new phylogenetic groups. The system has been validated by the successful identification of TR from echinoderm purple sea urchin Strongylocentrotus purpuratus. The sea urchin TR (spTR) is the first invertebrate TR that has been identified and can serve as a model for understanding how the vertebrate TR evolved with vertebrate-specific traits. By using phylogenetic comparative analysis, the secondary structure of spTR was determined. The spTR secondary structure reveals unique sea urchin specific structure elements as well as homologous structural features shared by TR from other organisms. This study enhanced the understanding of telomerase mechanism and the evolution of telomerase RNP. The system that was used to identity telomerase RNA can be employed for the discovery of other TR as well as the discovery of novel RNA from other RNP complex.
ContributorsLi, Yang (Author) / Chen, Julian Jl (Thesis advisor) / Yan, Hao (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
149763-Thumbnail Image.png
Description
In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment.
ContributorsBley, Christopher James (Author) / Chen, Julian (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150763-Thumbnail Image.png
Description
Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties

Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties of the proteins derived from GFP allows increased complexity of experiments and consequently, information content of the data acquired. The importance of arginine-96 in GFP has been widely discussed. It has been established as vital to the kinetics of chromophore maturation and to the overall fold of GFP before post-translational self-modification. Its value during chromophore maturation has been demonstrated by mutational studies and a hypothesis proposed for its catalytic function. A strategy is described herein to determine its pKa value via NMR to determine whether Arg96 possesses the chemical capacity to function as a general base during GFP chromophore biosynthesis. Förster resonance energy transfer (FRET) techniques commonly employ Enhanced Cyan Fluorescent Proteins (ECFPs) and their derivatives as donor fluorophores useful in real-time, live-cell imaging. These proteins have a tryptophan-derived chromophore that emits light in the blue region of the visible spectrum. Most ECFPs suffer from fluorescence instability, which, coupled with their low quantum yield, makes data analysis unreliable. The structural heterogeneity of these proteins also results in undesirable photophysical characteristics. Recently, mCerulean3, a ten amino acid mutant of ECFP, was introduced as an optimized FRET-donor protein (1). The amino acids changed include a mobile residue, Asp148, which has been mutated to a glycine in the new construct, and Thr65 near the chromophore has been mutated to a serine, the wild-type residue at this location. I have solved the x-ray crystal structure of mCerulean3 at low pH and find that the pH-dependent isomerization has been eliminated. The chromophore is in the trans-conformation previously observed in Cerulean at pH 8. The mutations that increase the quantum yield and improve fluorescence brightness result in a stable, bright donor fluorophore well-suited for use in quantitative microscopic imaging.
ContributorsWatkins, Jennifer L (Author) / Wachter, Rebekka M. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012
150218-Thumbnail Image.png
Description
Natural products that target the DNA of cancer cells have been an important source of knowledge and understanding in the development of anticancer chemotherapeutic agents. Bleomycin (BLM) exemplifies this class of DNA damaging agent. The ability of BLM to chelate metal ions and effect oxidative damage of the deoxyribose sugar

Natural products that target the DNA of cancer cells have been an important source of knowledge and understanding in the development of anticancer chemotherapeutic agents. Bleomycin (BLM) exemplifies this class of DNA damaging agent. The ability of BLM to chelate metal ions and effect oxidative damage of the deoxyribose sugar moiety of DNA has been studied extensively for four decades. Here, the study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal free BLM. The ability of BLM to effect single-stranded was then extensively characterized on both the 3′ and 5′-arms of the hairpin DNAs. The strongly bound DNAs were found to be efficient substrates for Fe·BLM A5-mediated cleavage. Surprisingly, the most prevalent site of damage by BLM was found to be a 5′-AT-3′ dinucleotide sequence. This dinucleotide sequence and others generally not cleaved by BLM when examined using arbitrarily chosen DNA substrate were found in examining the library of ten hairpin DNAs. In total, 111 sites of DNA damage were found to be produced by exposure of the hairpin DNA library to Fe·BLM A5. Also, an assay was developed with which to test the propensity of the hairpin DNAs to undergo double stranded DNA damage. Adapting methods previously described by the Povirk laboratory, one hairpin was characterized using this method. The results were in accordance with those previously reported.
ContributorsSegerman, Zachary (Author) / Hecht, Sidney M. (Thesis advisor) / Levitus, Marcia (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150268-Thumbnail Image.png
Description
A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors

A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors of DNA and RNA. Threose nucleic acid (TNA) is capable of forming stable helical structures with complementary strands of itself and RNA. This provides a plausible mechanism for genetic information transfer between TNA and RNA. Therefore TNA has been proposed as a potential RNA progenitor. Using molecular evolution, functional sequences were isolated from a pool of random TNA molecules. This implicates a possible chemical framework capable of crosstalk between TNA and RNA. Further, this shows that heredity and evolution are not limited to the natural genetic system based on ribofuranosyl nucleic acids. Another alternative genetic system, glycerol nucleic acid (GNA) undergoes intrasystem pairing with superior thermalstability compared to that of DNA. Inspired by this property, I demonstrated a minimal nanostructure composed of both left- and right-handed mirro image GNA. This work suggested that GNA could be useful as promising orthogonal material in structural DNA nanotechnology.
ContributorsZhang, Su (Author) / Chaut, John C (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
150978-Thumbnail Image.png
Description
Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and

Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and catalyze hydrogen oxidation in vivo. In contrast, the group 3 [NiFe]-hydrogenases are heteromultimeric, bifunctional enzymes that fulfill various cellular roles. In this dissertation, protein film electrochemistry (PFE) is used to characterize the catalytic properties of two group 3 [NiFe]-hydrogenases: HoxEFUYH from Synechocystsis sp. PCC 6803 and SHI from Pyrococcus furiosus. First, HoxEFUYH is shown to be biased towards hydrogen production. Upon exposure to oxygen, HoxEFUYH inactivates to two states, both of which can be reactivated on the timescale of seconds. Second, we show that PfSHI is the first example of an oxygen tolerant [NiFe]-hydrogenase that produces two inactive states upon exposure to oxygen. Both inactive states are analogous to those characterized for HoxEFUYH, but oxygen exposed PfSHI produces a greater fraction that reactivates at high potentials, enabling hydrogen oxidation in the presence of oxygen. Third, it is shown that removing the NAD(P)-reducing subunits from PfSHI leads to a decrease in bias towards hydrogen oxidation and renders the enzyme oxygen sensitive. Both traits are likely due to impaired intramolecular electron transfer. Mechanistic hypotheseses for these functional differences are considered.
ContributorsMcIntosh, Chelsea Lee (Author) / Jones, Anne K (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
149963-Thumbnail Image.png
Description
Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group,

Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species.
ContributorsQi, Xiaodong (Author) / Chen, Julian (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2011
154006-Thumbnail Image.png
Description
Molecular docking serves as an important tool in modeling protein-ligand interactions. Most of the docking approaches treat the protein receptor as rigid and move the ligand in the binding pocket through an energy minimization, which is an incorrect approach as proteins are flexible and undergo conformational changes upon ligand binding.

Molecular docking serves as an important tool in modeling protein-ligand interactions. Most of the docking approaches treat the protein receptor as rigid and move the ligand in the binding pocket through an energy minimization, which is an incorrect approach as proteins are flexible and undergo conformational changes upon ligand binding. However, modeling receptor backbone flexibility in docking is challenging and computationally expensive due to the large conformational space that needs to be sampled.

A novel flexible docking approach called BP-Dock (Backbone Perturbation docking) was developed to overcome this challenge. BP-Dock integrates both backbone and side chain conformational changes of a protein through a multi-scale approach. In BP-Dock, the residues along a protein chain are perturbed mimicking the binding induced event, with a small Brownian kick, one at a time. The fluctuation response profile of the chain upon these perturbations is computed by Perturbation Response Scanning (PRS) to generate multiple receptor conformations for ensemble docking. To evaluate the performance of BP-Dock, this approach was applied to a large and diverse dataset of unbound structures as receptors. Furthermore, the protein-peptide docking of PICK1-PDZ proteins was investigated. This study elucidates the determinants of PICK1-PDZ binding that plays crucial roles in numerous neurodegenerative disorders. BP-Dock approach was also extended to the challenging problem of protein-glycan docking and applied to analyze the energetics of glycan recognition in Cyanovirin-N (CVN), a cyanobacterial lectin that inhibits HIV by binding to its highly glycosylated envelope protein gp120. This study provide the energetic contribution of the individual residues lining the binding pocket of CVN and explore the effect of structural flexibility in the hinge region of CVN on glycan binding, which are also verified experimentally. Overall, these successful applications of BP-Dock highlight the importance of modeling backbone flexibility in docking that can have important implications in defining the binding properties of protein-ligand interactions.

Finally, an induced fit docking approach called Adaptive BP-Dock is presented that allows both protein and ligand conformational sampling during the docking. Adaptive BP-Dock can provide a faster and efficient docking approach for the virtual screening of novel targets for rational drug design and aid our understanding of protein-ligand interactions.
ContributorsBolia, Ashini (Author) / Ozkan, Sefika Banu (Thesis advisor) / Ghirlanda, Giovanna (Thesis advisor) / Beckstein, Oliver (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2015
157186-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM

Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM contacts. This thesis is devoted to understanding how interactions between GBPs and their receptors modulate biological phenomena. Bacteria express GBPs on surface that facilitate dissemination and colonization by attaching to host ECM. The first GBP investigated in this thesis is decorin binding protein (DBP) found on the surface of Borrelia burgdorferi, causative pathogens in Lyme disease. DBPs bind GAGs of decorin, a proteoglycan in ECM. Of the two isoforms, DBPB is less studied than DBPA. In current work, structure of DBPB from B. burgdorferi and its GAG interactions were investigated using solution NMR techniques. DBPB adopts a five-helical structure, similar to DBPA. Despite similar GAG affinities, DBPB has its primary GAG-binding site on the lysine-rich C terminus, which is different from DBPA. Besides GAGs, GBPs in ECM also interact with cell surface receptors, such as integrins. Integrins belong to a big family of heterodimeric transmembrane proteins that receive extracellular cues and transmit signals bidirectionally to regulate cell adhesion, migration, growth and survival. The second part of this thesis focuses on αM I-domain of the promiscuous integrin αMβ2 (Mac-1 or CD11b/CD18) and explores the structural mechanism of αM I-domain interactions with pleiotrophin (PTN) and platelet factor 4 (PF4), which are cationic proteins with high GAG affinities. After completing the backbone assignment of αM I-domain, paramagnetic relaxation enhancement (PRE) experiments were performed to show that both PTN and PF4 bind αM I-domain using metal ion dependent adhesion site (MIDAS) in an Mg2+ independent way, which differs from the classical Mg2+ dependent mechanism used by all known integrin ligands thus far. In addition, NMR relaxation dispersion analysis revealed unique inherent conformational dynamics in αM I-domain centered around MIDAS and the crucial C-terminal helix. These dynamic motions are potentially functionally relevant and may explain the ligand promiscuity of the receptor, but requires further studies.
ContributorsFeng, Wei (Biologist) (Author) / Wang, Xu (Thesis advisor) / Yarger, Jeff L (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2019
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12